Аннотация
Биологические инсектициды для защиты растений на основе бактерий Bacillus thuringiensis (Bt) обладают высокой специфичностью действия по отношению к различным отрядам насекомых и безопасны для окружающей среды. Колорадский жук (Leptinotarsa decemlineata) самый распространенный вредитель пасленовых культур в мире. Широкий ареал обитания колорадского жука в различных по климатическим условиям регионах, быстрое формирование устойчивости к широкому спектру химических инсектицидов, ставит вопрос за счет каких защитных реакций он обладает такой экологической пластичностью и насколько быстро формирует устойчивость к биологическим инсектицидам. В данном исследовании у личинок колорадского жука из двух районов Новосибирской области (НСО) изучены показатели клеточного и гуморального иммунитета, активность ферментов антиоксидантной и детоксицирующей систем, микробиота кишечника и восприимчивость к бактериям B. thuringiensis. Общее количество гемоцитов и лизоцим-подобная антибактериальная активность в гемолимфе у насекомых Венгеровского района НСО в 1,5-2 раза выше по сравнению с личинками Ордынского района НСО. В кишечнике и жировом теле у личинок из Ордынского района отмечена повышенная в 1,7-2,5 раза активность ферментов детоксикации по сравнению с Венгеровской группой насекомых. Показано, что доминирующей группой кишечной микробиоты насекомых из двух районов НСО являются бактерии семейства Enterobacteriaceae и Citrobacter, однако у личинок из Ордынского района одной из мажорных групп являются бактерии рода Spiroplasma. Установлено, что насекомые не отличались по уровню чувствительности к бактериям B. thuringiensis. Развитие бактериальной инфекции приводит к увеличению активности ФО в гемолимфе насекомых в 2-3 раза, при этом у группы насекомых Ордынского района НСО зарегистрирован 1,5-кратное увеличение общего количества гемоцитов. Таким образом, установлено, что насекомые разных географических популяций могут эффективно перестраивать защитную стратегию от энтомопатогенов, за счет баланса между их конституциональными и индуцированными системами резистентности.
Литература
Alyokhin A, Rondon SI, Gao Y (2022) Insect Pests of Potato: Global Perspectives on Biology and Management.
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record É, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Thomas GWC, Torson AS, Vargas Jentzsch IM, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S (2018) A model species for agricultural pest genomics: The genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 8:. https://doi.org/10.1038/s41598-018-20154-1
Izzo VM, Chen YH, Schoville SD, Wang C, Hawthorne DJ (2018) Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). J Econ Entomol 111:. https://doi.org/10.1093/jee/tox367
Molnar I, Rakosy-Tican E (2021) Difficulties in potato pest control: The case of pyrethroids on colorado potato beetle. Agronomy 11
Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17
Domínguez-Arrizabalaga M, Villanueva M, Escriche B, Ancín-Azpilicueta C, Caballero P (2020) Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests. Toxins (Basel) 12.
Crickmore N, Berry C, Panneerselvam S, Mishra R, Connor TR, Bonning BC (2021) A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J Invertebr Pathol 186:. https://doi.org/10.1016/j.jip.2020.107438
Dubovskiy IM, Grizanova EV, Gerasimova SV (2023) Plant recombinant gene technology for pest control in XXI century: from simple transgenesis to CRISPR/Cas. In: Kumar A, Arora S, Ogita S, Yau Y-Y, Mukherjee K (eds) Gene editing in plants: CRISPR-Cas and its applications. Springer Nature Singapore Pte Ltd., Singapore.
Kumar P, Kamle M, Borah R, Mahato DK, Sharma B (2021) Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egypt J Biol Pest Control 31.
Dubovskiy IM, Grizanova E V., Tereshchenko D, Krytsyna TI, Alikina T, Kalmykova G, Kabilov M, Coates CJ (2021) Bacillus thuringiensis spores and Cry3A toxins act synergistically to expedite colorado potato beetle mortality. Toxins (Basel) 13:. https://doi.org/10.3390/toxins13110746
Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49.
Soberón M, Gill SS, Bravo A (2009) Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences 66.
Ruiz-Arroyo VM, García-Robles I, Ochoa-Campuzano C, Goig GA, Zaitseva E, Baaken G, Martínez-Ramírez AC, Rausell C, Real MD (2017) Validation of ADAM10 metalloprotease as a Bacillus thuringiensis Cry3Aa toxin functional receptor in Colorado potato beetle (Leptinotarsa decemlineata). Insect Mol Biol 26:. https://doi.org/10.1111/imb.12285
García-Robles I, De Loma J, Capilla M, Roger I, Boix-Montesinos P, Carrión P, Vicente M, López-Galiano MJ, Real MD, Rausell C (2020) Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis. Dev Comp Immunol 104:. https://doi.org/10.1016/j.dci.2019.103525
Yaroslavtseva ON, Dubovskiy IM, Khodyrev VP, Duisembekov BA, Kryukov VY, Glupov V V. (2017) Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. J Insect Physiol 96:. https://doi.org/10.1016/j.jinsphys.2016.10.004
Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol 58:. https://doi.org/10.1016/j.dci.2015.12.006
Marmaras VJ, Lampropoulou M (2009) Regulators and signalling in insect haemocyte immunity. Cell Signal 21
Grizanova E V., Krytsyna TI, Surcova VS, Dubovskiy IM (2019) The role of midgut nonspecific esterase in the susceptibility of Galleria mellonella larvae to Bacillus thuringiensis. J Invertebr Pathol 166:. https://doi.org/10.1016/j.jip.2019.107208
Hoffman RL (2003) A new genus and species of trigoniuline milliped from Western Australia (Spirobolida: Pachybolidae: Trigoniulinae). Records of the Western Australian Museum 22:. https://doi.org/10.18195/issn.0312-3162.22(1).2003.017-022
Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29:. https://doi.org/10.1002/arch.940290208
Krishnan N, Kodrík D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol 52:. https://doi.org/10.1016/j.jinsphys.2005.08.009
Krishnan N, Kodrík D, Turanli F, Sehnal F (2007) Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata. J Insect Physiol 53:. https://doi.org/10.1016/j.jinsphys.2006.10.001
Yu Y, Wang Y, Li H, Yu X, Shi W, Zhai J (2021) Comparison of Microbial Communities in Colorado Potato Beetles (Leptinotarsa decemlineata Say) Collected From Different Sources in China. Front Microbiol 12:. https://doi.org/10.3389/fmicb.2021.639913
Polenogova O V., Noskov YA, Yaroslavtseva ON, Kryukova NA, Alikina T, Klementeva TN, Andrejeva J, Khodyrev VP, Kabilov MR, Kryukov VY, Glupov V V. (2021) Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS One 16:. https://doi.org/10.1371/journal.pone.0248704
Wang GH, Berdy BM, Velasquez O, Jovanovic N, Alkhalifa S, Minbiole KPC, Brucker RM (2020) Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure. Cell Host Microbe 27:. https://doi.org/10.1016/j.chom.2020.01.009
Muratoglu H, Demirbag Z, Sezen K (2011) The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biologia (Bratisl) 66:. https://doi.org/10.2478/s11756-011-0021-6
Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:. https://doi.org/10.1046/j.1365-2311.2002.00393.x
Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: A facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings of the Royal Society B: Biological Sciences 270:. https://doi.org/10.1098/rspb.2003.2537
Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:. https://doi.org/10.1371/journal.ppat.1000368
Charlat S, Duplouy A, Hornett EA, Dyson EA, Davies N, Roderick GK, Wedell N, Hurst GD (2009) The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evol Biol 9:. https://doi.org/10.1186/1471-2148-9-64
White JA, Kelly SE, Perlman SJ, Hunter MS (2009) Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: Disentangling the roles of Cardinium and Wolbachia symbionts. Heredity (Edinb) 102:. https://doi.org/10.1038/hdy.2009.5
Li S, Xu X, De Mandal S, Shakeel M, Hua Y, Shoukat RF, Fu D, Jin F (2021) Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environmental Pollution 271:. https://doi.org/10.1016/j.envpol.2020.116271
Sorokan’ A, Benkovskaya G, Blagova D, Maksimova T, Maksimov I (2018) Defense Responses and Changes in Symbiotic Gut Microflora in the Colorado Potato Beetle Leptinotarsa decemlineata under the Effect of Endophytic Bacteria from the Genus Bacillus. J Evol Biochem Physiol 54:300–307. https://doi.org/10.1134/S0022093018040063
Gujar GT, Mittal A, Kumari A, Kalia V (2004) Host crop influence on the susceptibility of the American bollworm, Helicoverpa armigera, to Bacillus thuringiensis ssp. kurstaki HD-73. Entomol Exp Appl 113:. https://doi.org/10.1111/j.0013-8703.2004.00223.x
Tu XY, Xia QW, Chen C, He HM, Xue F Sen (2015) Geographic variation in developmental duration of the Asian corn borer, Ostrinia furnacalis (Guené) (Lepidoptera: Crambidae) in China. Shengtai Xuebao 35:. https://doi.org/10.5846/stxb201303260512
Xia X, Sun B, Gurr GM, Vasseur L, Xue M, You M (2018) Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol 9:. https://doi.org/10.3389/fmicb.2018.00025
Benkovskaya G, Dubovskiy I (2020) Spreading of colorado potato beetle resistance to chemical insecticides in siberia and history of its settling in the secondary area. Plant Protection News 103:37–39. https://doi.org/10.31993/2308-6459-2020-103-1-37-39
Yang F, Crossley MS, Schrader L, Dubovskiy IM, Wei S, Zhang R (2022) Polygenic adaptation contributes to the invasive success of the Colorado potato beetle. Mol Ecol 31:5568–5580. https://doi.org/10.1111/mec.16666
Dubovskiy IM, Grizanova E V., Tereshchenko D, Krytsyna TI, Alikina T, Kalmykova G, Kabilov M, Coates CJ (2021) Bacillus thuringiensis Spores and Cry3A Toxins Act Synergistically to Expedite Colorado Potato Beetle Mortality. Toxins (Basel) 13:746. https://doi.org/10.3390/toxins13110746
Ashida M, Söderhäll K (1984) The prophenoloxidase activating system in crayfish. Comparative Biochemistry and Physiology -- Part B: Biochemistry and 77:. https://doi.org/10.1016/0305-0491(84)90217-7
Wojda I, Kowalski P, Jakubowicz T (2004) JNK MAP kinase is involved in the humoral immune response of the greater wax moth larvae Galleria mellonella. Arch Insect Biochem Physiol 56:. https://doi.org/10.1002/arch.20001
Wang Y, Oberley LW, Murhammer DW (2001) Antioxidant defense systems of two lipidopteran insect cell lines. Free Radic Biol Med 30:. https://doi.org/10.1016/S0891-5849(01)00520-2
Prabhakaran SK, Kamble ST (1993) Activity and electrophoretic characterization of esterases in insecticide-resistant and susceptible strains of German cockroach (Dictyoptera: Blattellidae). J Econ Entomol 86:. https://doi.org/10.1093/jee/86.4.1009
Dubovskiy IM, Grizanova E V., Ershova NS, Rantala MJ, Glupov V V. (2011) The effects of dietary nickel on the detoxification enzymes, innate immunity and resistance to the fungus Beauveria bassiana in the larvae of the greater wax moth Galleria mellonella. Chemosphere 85:. https://doi.org/10.1016/j.chemosphere.2011.05.039
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249:
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:. https://doi.org/10.1016/0003-2697(76)90527-3
Dubovskiy IM, Martemyanov V V., Vorontsova YL, Rantala MJ, Gryzanova E V., Glupov V V. (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology - C Toxicology and Pharmacology 148:. https://doi.org/10.1016/j.cbpc.2008.02.003
Grizanova E V., Krytsyna TI, Kalmykova G V., Sokolova E, Alikina T, Kabilov M, Coates CJ, Dubovskiy IM (2023) Virulent and necrotrophic strategies of Bacillus thuringiensis in susceptible and resistant insects, Galleria mellonella. Microb Pathog 175:105958. https://doi.org/10.1016/j.micpath.2022.105958
Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2:6. https://doi.org/10.1186/2049-2618-2-6
Lysko SB, Baturina OA, Naumova NB, Lescheva NA, Pleshakova VI, Kabilov MR (2021) No-Antibiotic-Pectin-Based Treatment Differently Modified Cloaca Bacteriobiome of Male and Female Broiler Chickens. Agriculture 12:24. https://doi.org/10.3390/agriculture12010024
Edgar RC (2013) UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:. https://doi.org/10.1038/nmeth.2604
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461
Edgar R (2016) SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv. https://doi.org/10.1101/074161
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:. https://doi.org/10.1128/AEM.00062-07
Dubovskiy IM, Whitten MMA, Kryukov VY, Yaroslavtseva ON, Grizanova E V., Greig C, Mukherjee K, Vilcinskas A, Mitkovets P V., Glupov V V., Butt TM (2013) More than a colour change: Insect melanism, disease resistance and fecundity. Proceedings of the Royal Society B: Biological Sciences 280:. https://doi.org/10.1098/rspb.2013.0584
Safi NHZ, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M, Enayati A, Hemingway J (2017) Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malar J 16
Sayani Z, Mikani A, Mosallanejad H (2019) Biochemical Resistance Mechanisms to Fenvalerate in Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 112:. https://doi.org/10.1093/jee/toz025
Akiner MM (2014) [Malathion and propoxur resistance in Turkish populations of the Anopheles maculipennis Meigen (Diptera: Culicidae) and relation to the insensitive acetylcholinesterase]. Türkiye parazitolojii dergisi / Türkiye Parazitoloji Derneǧi = Acta parasitologica Turcica / Turkish Society for Parasitology 38:111–115. https://doi.org/10.5152/tpd.2014.3388
Moustafa MAM, Moteleb RIA, Ghoneim YF, Hafez SS, Ali RE, Eweis EEA, Hassan NN (2023) Monitoring Resistance and Biochemical Studies of Three Egyptian Field Strains of Spodoptera littoralis (Lepidoptera: Noctuidae) to Six Insecticides. Toxics 11:. https://doi.org/10.3390/toxics11030211
Yang XQ, Zhang YL (2015) Investigation of insecticide-resistance status of Cydia pomonella in Chinese populations. Bull Entomol Res 105:. https://doi.org/10.1017/S0007485315000115
Kryukov VY, Kabilov MR, Smirnova N, Tomilova OG, Tyurin M V., Akhanaev YB, Polenogova O V., Danilov VP, Zhangissina SK, Alikina T, Yaroslavtseva ON, Glupov V V. (2019) Bacterial decomposition of insects post-Metarhizium infection: Possible influence on plant growth. Fungal Biol 123:. https://doi.org/10.1016/j.funbio.2019.09.012
Hackett KJ, Whitcomb RF, Clark TB, Henegar RB, Lynn DE, Wagner AG, Tully JG, Gasparich GE, Rose DL, Carle P, Bové JM, Konai M, Clark EA, Adams JR, Williamson DL (1996) Spiroplasma leptinotarsae sp. nov., a Mollicute uniquely adapted to its host, the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Int J Syst Bacteriol 46:. https://doi.org/10.1099/00207713-46-4-906
Goretty CCM, Loera-Muro A, Thelma C, Julian AMC, David MSM, Aarón B (2019) Analysis of the bacterial communities and endosymbionts of natural populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone. Ann Microbiol 69:. https://doi.org/10.1007/s13213-019-01483-6
Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol Ecol 20:. https://doi.org/10.1111/j.1365-294X.2010.04980.x
Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A 103:. https://doi.org/10.1073/pnas.0604865103
Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109:. https://doi.org/10.1073/pnas.1200231109
Engel P, Moran NA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37
Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L, Lin H, Bai J, He W, You M (2013) DNA Sequencing Reveals the Midgut Microbiota of Diamondback Moth, Plutella xylostella (L.) and a Possible Relationship with Insecticide Resistance. PLoS One 8:. https://doi.org/10.1371/journal.pone.0068852
Kikuchi Y, Yumoto I (2013) Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl Environ Microbiol 79:. https://doi.org/10.1128/AEM.03299-12
Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:. https://doi.org/10.1186/s40168-017-0236-z
Serra Canales M, Hrdina A, Arias-Rojas A, Frahm D The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster 3 resistance to pathogens by enhancing iron-sequestration and melanization 4 5 6. https://doi.org/10.1101/2023.12.19.572372
Upfold J, Rejasse A, Nielsen-Leroux C, Jensen AB, Sanchis-Borja V (2023) The immunostimulatory role of an Enterococcus-dominated gut microbiota in host protection against bacterial and fungal pathogens in Galleria mellonella larvae. Frontiers in Insect Science 3:. https://doi.org/10.3389/finsc.2023.1260333
Hoang KL, King KC (2022) Symbiont-mediated immune priming in animals through an evolutionary lens. Microbiology (United Kingdom) 168
Hamilton PT, Leong JS, Koop BF, Perlman SJ (2014) Transcriptional responses in a Drosophila defensive symbiosis. Mol Ecol 23:. https://doi.org/10.1111/mec.12603
Masson F, Rommelaere S, Marra A, Schüpfer F, Lemaitre B (2021) Dual proteomics of Drosophila melanogaster hemolymph infected with the heritable endosymbiont Spiroplasma poulsonii. PLoS One 16:. https://doi.org/10.1371/journal.pone.0250524
Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: Recent spread of a drosophila defensive symbiont. Science (1979) 329:. https://doi.org/10.1126/science.1188235
Chertkova EA, Grizanova E V., Dubovskiy IM (2018) Bacterial and fungal infections induce bursts of dopamine in the haemolymph of the Colorado potato beetle Leptinotarsa decemlineata and greater wax moth Galleria mellonella. J Invertebr Pathol 153:. https://doi.org/10.1016/j.jip.2018.02.020
Grizanova E V., Dubovskiy IM, Whitten MMA, Glupov V V. (2014) Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by bacillus thuringiensis. J Invertebr Pathol 119:. https://doi.org/10.1016/j.jip.2014.04.003
Zwick RK, Ohlstein B, Klein OD (2019) Intestinal renewal across the animal kingdom: comparing stem cell activity in mouse and Drosophila . American Journal of Physiology-Gastrointestinal and Liver Physiology 316:. https://doi.org/10.1152/ajpgi.00353.2018
Wu K, Yang B, Huang W, Dobens L, Song H, Ling E (2016) Gut immunity in Lepidopteran insects. Dev Comp Immunol 64:. https://doi.org/10.1016/j.dci.2016.02.010
Terra WR, Dias RO, Oliveira PL, Ferreira C, Venancio TM (2018) Transcriptomic analyses uncover emerging roles of mucins, lysosome/secretory addressing and detoxification pathways in insect midguts. Curr Opin Insect Sci 29
St. Leger RJ, Cooper RM, Charnley AK (1988) The effect of melanization of Manduca sexta cuticle on growth and infection by Metarhizium anisopliae. J Invertebr Pathol 52:. https://doi.org/10.1016/0022-2011(88)90059-6
Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annual review of entomology Vol 39. https://doi.org/10.1146/annurev.ento.39.1.293
Rahman MM, Roberts HLS, Sarjan M, Asgarit S, Schmidt O (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc Natl Acad Sci U S A 101:. https://doi.org/10.1073/pnas.0306669101
Ayres JS, Schneider DS (2008) A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol 6:. https://doi.org/10.1371/journal.pbio.0060305
Khan MM, Kaleem-Ullah RM, Siddiqui JA, Ali S (2020) Insecticide Resistance and Detoxification Enzymes Activity in Nilaparvata lugens Stål Against Neonicotinoids. Journal of Agricultural Science 12:. https://doi.org/10.5539/jas.v12n5p24
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X (2023) Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 13
Gunning R V., Dang HT, Kemp FC, Nicholson IC, Moores GD (2005) New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol 71:. https://doi.org/10.1128/AEM.71.5.2558-2563.2005
Grizanova E V., Semenova AD, Komarov DA, Chertkova EA, Slepneva IA, Dubovskiy IM (2018) Maintenance of redox balance by antioxidants in hemolymph of the greater wax moth Galleria mellonella larvae during encapsulation response. Arch Insect Biochem Physiol 98:. https://doi.org/10.1002/arch.21460
Munday R, Winterbourn CC (1989) Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defence mechanism. Biochem Pharmacol 38
Sies H (1991) Oxidative stress: From basic research to clinical application. Am J Med 91:. https://doi.org/10.1016/0002-9343(91)90281-2