ВНЕКЛЕТОЧНЫЕ ПОТЕНЦИАЛЫ ДЕЙСТВИЯ КАРДИОМИОЦИТОВ ЖЕЛУДОЧКОВ В ИЗОЛИРОВАННОМ СЕРДЦЕ КРЫС, СОДЕРЖАЩИХСЯ НА ВЫСОКОЖИРОВОЙ/ВЫСОКОСАХАРОЗНОЙ ДИЕТЕ
PDF

Ключевые слова

крыса
кардиомиоцит
высокожировая/высокосахарозная диета
кардиомиопатия
внеклеточный потенциал действия
SK-каналы

Аннотация

Крысы, содержащиеся на высокожировой/высокосахарозной диете (ВЖСД) в течение 10-12 недель, демонстрировали развитие гипергликемии и признаки висцерального ожирения. Субэпикардиальные миоциты левого желудочка (ЛЖ) сердец этих крыс отличались от контроля существенно увеличенной фракцией внеклеточных потенциалов действия (вПД) сердца, характеризующихся выраженной фазой следовой гиперполяризации (СГ) и ускоренным спадом вПД. Локальная доставка в зону регистрации вПД апамина (блокатора Са2+-зависимых К+-каналов низкой проводимости (IKCa, SK-каналы) в концентрации 500 нМ в составе раствора внутри пипетки сопровождалась подавлением фазы СГ и продлением спада вПД. Полученные данные предполагают, что потребление ВЖСД ведет к увеличению экспрессии и/или активности SK-каналов и, как результат, к развитию СГ и укорочению вПД эпикардиальных кардиомиоцитов ЛЖ сердца крыс.

https://doi.org/10.31857/S0044452924070056
PDF

Литература

Kubasov IV, Chistyakova OV, Sukhov IB, Panov AA, Dobretsov MG (2020) Functional changes in the T-system of cardiomyocytes of the isolated rat heart during development of streptozotocin-induced diabetes. Russ J Physiol 106:1266–1277. https://doi.org/10.31857/s0869813920100052

Kubasov I V., Stepanov A V., Panov AA, Chistyakova O V., Sukhov IB, Dobretsov MG (2021) Role of Potassium Currents in the Formation of After-Hyperpolarization Phase of Extracellular Action Potentials Recorded from the Control and Diabetic Rat Heart Ventricular Myocytes. J Evol Biochem Physiol 57:1511–1521. https://doi.org/10.1134/s0022093021060272

Dedov II, Shestakova M V., Vikulova OK, Zheleznyakova A V., Isakov MA, Sazonova D V., Mokrysheva NG (2023) Diabetes Mellitus in the Russian Federation: Dynamics of Epidemiological Indicators According To the Federal Register of Diabetes Mellitus for the Period 2010–2022. Diabetes Mellit 26:104–123. https://doi.org/10.14341/DM13035

American Diabetes Association (2023) Standards of Care in Diabetes. Diabetes Care 46:S1–S291

Saklayen MG (2018) The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep 20:1–8. https://doi.org/10.1007/s11906-018-0812-z

Dobrowolski P, Prejbisz A, Kuryłowicz A, Baska A, Burchardt P, Chlebus K, Dzida G, Jankowski P, Jaroszewicz J, Jaworski P, Kamiński K, Kapłon-Cieślicka A, Klocek M, Kukla M, Mamcarz A, Mastalerz-Migas A, Narkiewicz K, Ostrowska L, Śliż D, Tarnowski W, Wolf J, Wyleżoł M, Zdrojewski T, Banach M, Januszewicz A, Bogdański P (2022) Metabolic syndrome – a new definition and management guidelines. Arch Med Sci 18:1133–1156. https://doi.org/10.5114/aoms/152921

Rodríguez-Correa E, González-Pérez I, Clavel-Pérez PI, Contreras-Vargas Y, Carvajal K (2020) Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice? Nutr Diabetes 10:. https://doi.org/10.1038/s41387-020-0127-4

Peris-Sampedro F, Mounib M, Schéle E, Edvardsson CE, Stoltenborg I, Adan RAH, Dickson SL (2019) Impact of Free-Choice Diets High in Fat and Different Sugars on Metabolic Outcome and Anxiety-Like Behavior in Rats. Obesity 27:409–419. https://doi.org/10.1002/oby.22381

Ahmed H, Hannan JL, Apolzan JW, Osikoya O, Cushen SC, Romero SA, Goulopoulou S (2019) A free-choice high-fat, high-sucrose diet induces hyperphagia, obesity, and cardiovascular dysfunction in female cycling and pregnant rats. Am J Physiol Regul Integr Comp Physiol 316:R472–R485. https://doi.org/10.1152/ajpregu.00391.2018

La Fleur SE, Luijendijk MCM, Van Rozen AJ, Kalsbeek A, Adan RAH (2011) A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity. Int J Obes 35:595–604. https://doi.org/10.1038/ijo.2010.164

Kubasov IV, Stepanov A, Bobkov D, Radwanski PB, Terpilowski MA, Dobretsov M, Gyorke S (2018) Sub-cellular electrical heterogeneity revealed by loose patch recording reflects differential localization of sarcolemmal ion channels in intact rat hearts. Front Physiol 9:1–9. https://doi.org/10.3389/fphys.2018.00061

Kuzmenkov AI, Peigneur S, Nasburg JA, Mineev KS, Nikolaev MV, Pinheiro-Junior EL, Arseniev AS, Wulff H, Tytgat J, Vassilevski AA (2022) Apamin structure and pharmacology revisited. Front Pharmacol 13:977440. https://doi.org/10.3389/fphar.2022.977440

Seferović PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs J, Paulus WJ, Komajda M, Cosentino F, de Boer RA, Farmakis D, Doehner W, Lambrinou E, Lopatin Y, Piepoli MF, Theodorakis MJ, Wiggers H, Lekakis J, Mebazaa A, Mamas MA, Tschöpe C, Hoes AW, Seferović JP, Logue J, McDonagh T, Riley JP, Milinković I, Polovina M, van Veldhuisen DJ, Lainscak M, Maggioni AP, Ruschitzka F, McMurray JJV (2018) Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20:853–872. https://doi.org/10.1002/ejhf.1170

Fontes-Carvalho R, Ladeiras-Lopes R, Bettencourt P, Leite-Moreira A, Azevedo A (2015) Diastolic dysfunction in the diabetic continuum: Association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc Diabetol 14:1–9. https://doi.org/10.1186/s12933-014-0168-x

Kubasov IV, Stepanov AV, Györke S (2017) Action potential heterogeneity as revealed by extracellular microelectrode recording from the surface of the isolated rat heart. J Evol Biochem Physiol 53:515–518. https://doi.org/10.1134/S0022093017060102

Kubasov I V., Bobkov DE, Stepanov A V., Sukhov IB, Chistyakova O V., Dobretsov MG (2020) Evaluation of the t-system of rat cardiomyocytes during early stages of streptozotocin-induced diabetes. Российский Физиологический Журнал Им И М Сеченова 106:1098–1108. https://doi.org/10.31857/s0869813920090046

Zhang X-D, Thai PN, Lieu DK, Chiamvimonvat N (2021) Cardiac small-conductance calcium-activated potassium channels in health and disease. Pflüg Arch - Eur J Physiol 473:477–489. https://doi.org/10.1007/s00424-021-02535-0

Yi F, Ling TY, Lu T, Wang XL, Li J, Claycomb WC, Shen WK, Lee HC (2015) Down-regulation of the small conductance calcium-activated potassium channels in diabetic mouse atria. J Biol Chem 290:7016–7026. https://doi.org/10.1074/jbc.M114.607952

Fu X, Pan Y, Cao Q, Li B, Wang S, Du H, Duan N, Li X (2018) Metformin restores electrophysiology of small conductance calcium-activated potassium channels in the atrium of GK diabetic rats. BMC Cardiovasc Disord 18:1–8. https://doi.org/10.1186/s12872-018-0805-5

Liu CH, Hua N, Fu X, Pan YL, Li B, Li XD (2018) Metformin regulates atrial SK2 and SK3 expression through inhibiting the PKC/ERK signaling pathway in type 2 diabetic rats. BMC Cardiovasc Disord 18:1–9. https://doi.org/10.1186/s12872-018-0950-x

Kanaporis G, Blatter LA (2023) Activation of small conductance Ca2+-activated K+ channels suppresses Ca2+ transient and action potential alternans in ventricular myocytes. J Physiol 601:51–67. https://doi.org/10.1113/JP283870

Gui L, Bao Z, Jia Y, Qin X, Cheng ZJ, Zhu J, Chen QH (2013) Ventricular tachyarrhythmias in rats with acute myocardial infarction involves activation of small-conductance Ca2+-activated K+ channels. Am J Physiol - Heart Circ Physiol 304:118–130. https://doi.org/10.1152/ajpheart.00820.2011

Chang P-C, Hsieh Y-C, Hsueh C-H, Weiss JN, Lin S-F, Chen P-S (2013) Apamin induces early afterdepolarizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium. Heart Rhythm 10:1516–1524. https://doi.org/10.1016/j.hrthm.2013.07.003

Chang P-C, Chen P-S (2015) SK Channels and Ventricular Arrhythmias in Heart Failure. Trends Cardiovasc Med 25:508. https://doi.org/10.1016/j.tcm.2015.01.010

Terentyev D, Rochira JA, Terentyeva R, Roder K, Koren G, Li W (2014) Sarcoplasmic reticulum Ca2+ release is both necessary and sufficient for SK channel activation in ventricular myocytes. Am J Physiol Heart Circ Physiol 306:H738-746. https://doi.org/10.1152/ajpheart.00621.2013

Coulombe A, Lefevre IA, Deroubaix E, Thuringer D, Coraboeuf E (1990) Effect of 2,3-butanedione 2-monoxime on slow inward and transient outward currents in rat ventricular myocytes. J Mol Cell Cardiol 22:921–932. https://doi.org/10.1016/0022-2828(90)90123-j

Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T, Shigekawa M, Kimura J (2001) Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 132:1317. https://doi.org/10.1038/sj.bjp.0703926

Stepanov AV, Dobretsov MG, Filippov YuA, Kubasov IV (2024) Influence of Apamin on the Extracellularly Recorded Action Potentials Profiles of Subepicardial Cardiomyocytes of the Rat Heart in Myocardial Infarction. J Evol Biochem Physiol 60:1317–1327. https://doi.org/10.1134/S0022093024040057