РОЛЬ ИНТЕГРИРОВАННОГО ОТВЕТА НА СТРЕСС (ИОС) В НЕЙРОПСИХИЧЕСКИХ ПАТОЛОГИЯХ ЦНС
PDF

Ключевые слова

интегрированный ответ на стресс
нейропсихические патологии
депрессия
шизофрения
аддикция
eIF2α
ATF4

Аннотация

Интегрированный ответ на стресс (ИОС) представляет собой консервативный для всех эукариот механизм клеточного ответа на различные сильные стрессовые сигналы, включая гипоксию, нехватку аминокислот и глюкозы, воспаление, стресс эндоплазматического ретикулума и другие. Центральным элементом ИОС является фосфорилирование эукариотического фактора инициации трансляции 2 альфа (eIF2α). Этот процесс регулируется четырьмя киназами: PERK, GCN2, HRI и PKR, каждая из которых активируется различными стрессовыми условиями. Система ИОС играет критическую роль в поддержании гомеостаза клеток и их выживании в условиях стресса, однако ее хроническая активация может привести к дисфункции клеток и программируемой клеточной смерти. Недавние исследования показывают, что ИОС активно вовлечен в патогенез нейродегенеративных заболеваний, включая болезни Альцгеймера и Паркинсона, боковой амиотрофический склероз, а также активируется при травматическом повреждении мозга. В то же время вклад ИОС в развитие психических расстройств, таких как депрессия, тревожные расстройства, шизофрения, биполярное расстройство, посттравматическое стрессовое расстройство и аддикции, остается недостаточно изученным. В работе рассматриваются современные данные о роли ИОС в патогенезе психических расстройств ЦНС, а также обсуждаются возможности терапевтической модуляции системы ИОС в контексте этих заболеваний.

https://doi.org/10.31857/S0044452924070019
PDF

Литература

Pakos‐Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17(10):1374–1395. https://doi.org/10.15252/embr.201642195

Boye E, Grallert B (2020) eIF2α phosphorylation and the regulation of translation. Curr Genet 66(2):293–297. https://doi.org/10.1007/s00294-019-01026-1

Liang S-H, Zhang W, Mcgrath BC, Zhang P, Cavener DR (2006) PERK (eIF2α kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J 393(1):201–209. https://doi.org/10.1042/BJ20050374

Wang P, Li J, Tao J, Sha B (2018) The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. J Biol Chem 293(11):4110–4121. https://doi.org/10.1074/jbc.RA117.001294

Almeida LM, Pinho BR, Duchen MR, Oliveira JM (2022) The PERKs of mitochondria protection during stress: insights for PERK modulation in neurodegenerative and metabolic diseases. Biol Revs 97(5):1737–1748. https://doi.org/10.1111/brv.12860

Girardin SE, Cuziol C, Philpott DJ, Arnoult D (2021) The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS J 288(10):3094–3107. https://doi.org/10.1111/febs.15553

Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Ann Rev Microbiol 59:407–450. https://doi.org/10.1146/annurev.micro.59.031805.133833

Marbach I, Licht R, Frohnmeyer H, Engelberg D (2001) Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem 276(20):16944–16951. https://doi.org/10.1074/jbc.M100383200

Lemaire PA, Anderson E, Lary J, Cole JL (2008) Mechanism of PKR Activation by dsRNA. J Mol Biol 381(2):351–360. https://doi.org/10.1016/j.jmb.2008.05.056

Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K (2019) PKR: a kinase to remember. Front Mol Neurosci 11:480. https://doi.org/10.3389/fnmol.2018.00480

Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M (2021) A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 288(22):6365–6391. https://doi.org/10.1111/febs.15691

Hinnebusch AG, Ivanov IP, Sonenberg N (2016) Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352(6292):1413–1416. https://doi.org/10.1126/science.aad9868

Kashiwagi K, Yokoyama T, Nishimoto M, Takahashi M, Sakamoto A, Yonemochi M, Shirouzu M, Ito T (2019) Structural basis for eIF2B inhibition in integrated stress response. Science 364(6439):495–459. https://doi.org/10.1126/science.aaw4104

Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167(1):27–33. https://doi.org/10.1083/jcb.200408003

Zhang J, Shi Y. (2024) An upstream open reading frame (5′-uORF) links oxidative stress to translational control of ALCAT1 through phosphorylation of eIF2α. Free Rad Biol Med 214:129–136. https://doi.org/10.1016/j.freeradbiomed.2024.02.015

Silva J, Fernandes R, Romão L (2019) Translational regulation by upstream open reading frames and human diseases. mRNA Metab Hum Dis 99–116. https://doi.org/10.1007/978-3-030-19966-1_5

Neill G, Masson GR (2023) A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 16:1112253. https://doi.org/10.3389/fnmol.2023.1112253

Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I (2016) The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med 16(6):533–544. https://doi.org/10.2174/1566524016666160523143937

Márton M, Bánhegyi G, Gyöngyösi N, Kálmán EÉ, Pettkó‐Szandtner A, Káldi K, Kapuy O (2022) A systems biological analysis of the ATF4‐GADD34‐CHOP regulatory triangle upon endoplasmic reticulum stress. FEBS Open Biol 12(11):2065–2082. https://doi.org/10.1002/2211-5463.13484

Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J Cell Biol 153(5):1011–1022. https://doi.org/10.1083/jcb.153.5.1011

Kastan JP, Dobrikova EY, Bryant JD, Gromeier M (2020) CReP mediates selective translation initiation at the endoplasmic reticulum. Sci Adv 6(23):eaba0745. https://doi.org/10.1126/sciadv.aba0745

Jimenez-Diaz A, Remacha M, Ballesta JP, Berlanga JJ (2013) Phosphorylation of initiation factor eIF2 in response to stress conditions is mediated by acidic ribosomal P1/P2 proteins in Saccharomyces cerevisiae. PLoS One 8(12):e84219. https://doi.org/10.1371/journal.pone.0084219

Lewerenz J, Maher P (2009) Basal levels of eIF2α phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J Biol Chem 284(2):1106–1115. https://doi.org/10.1074/jbc.M807325200

Wek RC (2018) Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb Persp Biology 10(7):a032870. https://doi.org/10.1101/cshperspect.a032870

Zeng N, Li Y, He L, Xu X, Galicia V, Deng C, Stiles BL (2011) Adaptive Basal Phosphorylation of eIF2α Is Responsible for Resistance to Cellular Stress-Induced Cell Death in Pten-Null Hepatocytes. Mol Cancer Res 9(12):1708–1717. https://doi.org/10.1158/1541-7786.MCR-11-0299

Grallert B, Boye E (2007) The Gcn2 kinase as a cell cycle regulator. Cell Cycle 6(22):2768–2772. https://doi.org/10.4161/cc.6.22.4933

Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7(6):1165–1176. https://doi.org/10.1016/S1097-2765(01)00265-9

Di Prisco GV, Huang W, Buffington SA, Hsu C-C, Bonnen PE, Placzek AN, Sidrauski C, Krnjević K, Kaufman RJ, Walter P (2014) Translational control of mGluR-dependent long-term depression and object-place learning by eIF2α. Nat Neurosci 17(8):1073–1082. https://doi.org/10.1038/nn.3754

Costa-Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, Sossin W, Kaufman R, Pelletier J, Rosenblum K (2007) eIF2α phosphorylation bidirectionally regulates the switch from short-to long-term synaptic plasticity and memory. Cell 129(1):195–206. https://doi.org/10.1016/j.cell.2007.01.050

Trinh MA, Klann E (2013) Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory. Neurobiol Learn Mem 105:93–99. https://doi.org/10.1016/j.nlm.2013.04.013

Zhang Q, Bestard-Lorigados I, Song W (2021) Cell-type-specific memory consolidation driven by translational control. Sign Transduct Targ Ther 6(1):40. https://doi.org/10.1038/s41392-021-00471-0

Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, Cavener DR, Klann E (2013) Suppression of eIF2α kinases alleviates AD-related synaptic plasticity and spatial memory deficits. Nat Neurosci 16(9):1299. https://doi.org/10.1038/nn.3486

Sharma V, Sood R, Khlaifia A, Eslamizade MJ, Hung T-Y, Lou D, Asgarihafshejani A, Lalzar M, Kiniry SJ, Stokes MP (2020) eIF2α controls memory consolidation via excitatory and somatostatin neurons. Nature 586(7829):412–416. https://doi.org/10.1038/s41586-020-2805-8

Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, Sathler LB, Brito-Moreira J, Amaral OB, Silva CA (2013) TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer's β-amyloid oligomers in mice and monkeys. Cell Metabol 18(6):831–843. https://doi.org/10.1016/j.cmet.2013.11.002

Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, Bruno M, Bidinosti M, Ben Mamou C, Marcinkiewicz E, Yoshida M (2005) Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature 436(7054):1166–1170. https://doi.org/10.1038/nature03897

Oliveira MM, Klann E (2022) eIF2-dependent translation initiation: Memory consolidation and disruption in Alzheimer's disease. Sem Cell Devel Biology 101–109. https://doi.org/10.1016/j.semcdb.2021.07.009

Pasini S, Corona C, Liu J, Greene LA, Shelanski ML (2015) Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep 11(2):183–191. https://doi.org/10.1016/j.celrep.2015.03.025

Oliveira MM, Mohamed M, Elder MK, Banegas-Morales K, Mamcarz M, Lu EH, Golhan EA, Navrange N, Chatterjee S, Abel T (2024) The integrated stress response effector GADD34 is repurposed by neurons to promote stimulus-induced translation. Cell Rep 43(2). https://doi.org/10.1016/j.celrep.2023.113670

Maurin A-C, Benani A, Lorsignol A, Brenachot X, Parry L, Carraro V, Guissard C, Averous J, Jousse C, Bruhat A (2014) Hypothalamic eIF2α signaling regulates food intake. Cell Rep 6(3):438-444. https://doi.org/10.1016/j.celrep.2014.01.006

Kim KK, Lee TH, Park BS, Kang D, Kim DH, Jeong B, Kim JW, Yang HR, Kim HR, Jin S, Back SH, Park JW, Kim JG, Lee BJ (2023) Bridging Energy Need and Feeding Behavior: The Impact of eIF2α Phosphorylation in AgRP Neurons. Diabetes 72(10):1384–1396. https://doi.org/10.2337/db23-0004

Anderson R, Agarwal A, Ghosh A, Guan BJ, Casteel J, Dvorina N, Baldwin WM, Mazumder B, Nazarko TY, Merrick WC, Buchner DA, Hatzoglou M, Kondratov RV, Komar AA (2021) eIF2A-knockout mice reveal decreased life span and metabolic syndrome. FASEB J 35(11):e21990. https://doi.org/10.1096/fj.202101105R

Costa-Mattioli M, Walter P (2020) The integrated stress response: From mechanism to disease. Science 368(6489):eaat5314. https://doi.org/10.1126/science.aat5314

Kernohan KD, Tétreault M, Liwak-Muir U, Geraghty MT, Qin W, Venkateswaran S, Davila J, Consortium CRC, Holcik M, Majewski J, Richer J, Boycott KM (2015) Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability. Hum Mol Genet 24(22):6293–6300. https://doi.org/10.1093/hmg/ddv337

Julier C, Nicolino M (2010) Wolcott-Rallison syndrome. Orphanet J Rare Dis 5(1):29. https://doi.org/10.1186/1750-1172-5-29

Elroy-Stein O, Schiffmann R (2020) Chapter 19 - Vanishing white matter disease. In: Rosenberg RN, Pascual JM, editors. Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease (Sixth Edition). Academic Press p. 301–317. https://doi.org/10.1016/B978-0-12-813866-3.00019-9

Chou A, Krukowski K, Jopson T, Zhu PJ, Costa-Mattioli M, Walter P, Rosi S (2017) Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc Natl Acad Sci USA 114(31):E6420–E6426. https://doi.org/10.1073/pnas.1707661114

Marlin E, Viu-Idocin C, Arrasate M, Aragón T. The Role and Therapeutic Potential of the Integrated Stress Response in Amyotrophic Lateral Sclerosis. Intl J Mol Sci 2022 https://doi.org/10.3390/ijms23147823

Way SW, Popko B (2016) Harnessing the integrated stress response for the treatment of multiple sclerosis. Lancet Neurol 15(4):434–443. https://doi.org/10.1016/S1474-4422(15)00381-6

Mercado G, Castillo V, Soto P, Sidhu A (2016) ER stress and Parkinson's disease: Pathological inputs that converge into the secretory pathway. Brain Res 1648:626–632. https://doi.org/10.1016/j.brainres.2016.04.042

Oliveira MM, Lourenco MV (2016) Integrated Stress Response: Connecting ApoE4 to Memory Impairment in Alzheimer's Disease. J Neurosci 36(4):1053–1055. https://doi.org/10.1523/JNEUROSCI.4110-15.2016

Oliveira MM, Lourenco MV, Longo F, Kasica NP, Yang W, Ureta G, Ferreira DD, Mendonça PH, Bernales S, Ma T (2021) Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer's disease. Sci Signal 14(668):eabc5429. https://doi.org/10.1126/scisignal.abc5429

Chang RC, Wong AK, Ng H-K, Hugon J (2002) Phosphorylation of eukaryotic initiation factor-2α (eIF2α) is associated with neuronal degeneration in Alzheimer's disease. Neuroreport 13(18):2429–2432. https://doi.org/10.1097/00001756-200212200-00011

Mouton-Liger F, Paquet C, Dumurgier J, Bouras C, Pradier L, Gray F, Hugon J (2012) Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochim Biophys Acta Mol Basis Dis 1822(6):885–896. https://doi.org/10.1016/j.bbadis.2012.01.009

O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S (2008) Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron 60(6):988–1009. https://doi.org/10.1016/j.neuron.2008.10.047

Kim HS, Choi Y, Shin KY, Joo Y, Lee YK, Jung SY, Suh YH, Kim JH (2007) Swedish amyloid precursor protein mutation increases phosphorylation of eIF2α in vitro and in vivo. J Neurosci Res 85(7):1528–1537. https://doi.org/10.1002/jnr.21267

Murray HC, Dieriks BV, Swanson ME, Anekal PV, Turner C, Faull RL, Belluscio L, Koretsky A, Curtis MA (2020) The unfolded protein response is activated in the olfactory system in Alzheimer's disease. Acta Neuropathol Commun 8:1–15. https://doi.org/10.1186/s40478-020-00986-7

Ferrer I (2002) Differential expression of phosphorylated translation initiation factor 2 alpha in Alzheimer's disease and Creutzfeldt-Jakob's disease. Neuropathol Appl Neurobiol 28(6):441–451. https://doi.org/10.1046/j.1365-2990.2002.t01-1-00410.x

Stutzbach LD, Xie SX, Naj AC, Albin R, Gilman S, Group PGS, Lee VM, Trojanowski JQ, Devlin B, Schellenberg GD (2013) The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. Acta Neuropathol Commun 1:1–13. https://doi.org/10.1186/2051-5960-1-31

de la Monte SM, Re E, Longato L, Tong M (2012) Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer's disease. J Alzheim Dis 30(s2):S217–S229. https://doi.org/10.3233/JAD-2012-111728

Unterberger U, Höftberger R, Gelpi E, Flicker H, Budka H, Voigtländer T (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exper Neurol 65(4):348-357. https://doi.org/10.1097/01.jnen.0000218445.30535.6f

Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, Cavener DR, Klann E (2013) Suppression of eIF2α kinases alleviates Alzheimer's disease-related plasticity and memory deficits. Nat Neurosci 16(9):1299–1305. https://doi.org/10.1038/nn.3486

Devi L, Ohno M (2014) PERK mediates eIF2α phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. Neurobiol Aging 35(10):2272–2281. https://doi.org/10.1016/j.neurobiolaging.2014.04.031

Zhang J-S, Zhou S-F, Wang Q, Guo J-N, Liang H-M, Deng J-B, He W-Y (2016) Gastrodin suppresses BACE1 expression under oxidative stress condition via inhibition of the PKR/eIF2α pathway in Alzheimer's disease. Neuroscience 325:1–9. https://doi.org/10.1016/j.neuroscience.2016.03.024

Hayakawa-Ogura M, Nakagawa T, Itoh M (2023) GADD34 suppresses eIF2α phosphorylation and improves cognitive function in Alzheimer's disease-model mice. Biochem Biophys Res Commun 654:112–129. https://doi.org/10.1016/j.bbrc.2023.02.077

Devi L, Ohno M (2010) Phospho-eIF2α level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice. PLoS One 5(9):e12974. https://doi.org/10.1371/journal.pone.0012974

Segev Y, Michaelson DM, Rosenblum K (2013) ApoE ε4 is associated with eIF2α phosphorylation and impaired learning in young mice. Neurobiol Aging 34(3):863–872. https://doi.org/10.1016/j.neurobiolaging.2012.06.020

Liang Y, Ye C, Chen Y, Chen Y, Diao S, Huang M. (2021) Berberine improves behavioral and cognitive deficits in a mouse model of Alzheimer's disease via regulation of β-amyloid production and endoplasmic reticulum stress. ACS Chem Neurosci 12(11):1894–1904. https://doi.org/10.1021/acschemneuro.0c00808

Hayakawa M, Itoh M, Ohta K, Li S, Ueda M, Wang M-x, Nishida E, Islam S, Suzuki C, Ohzawa K. (2015) Quercetin reduces eIF2α phosphorylation by GADD34 induction. Neurobiol Aging 36(9):2509–2518. https://doi.org/10.1016/j.neurobiolaging.2015.05.006

Lizarazo S, Yook Y, Tsai NP (2022) Amyloid beta induces Fmr1‐dependent translational suppression and hyposynchrony of neural activity via phosphorylation of eIF2α and eEF2. J Cell Physiol 237(7):2929–2942. https://doi.org/10.1002/jcp.30754

Devi L, Ohno M (2013) Mechanisms that lessen benefits of β-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry 3(7):e284. https://doi.org/10.1038/tp.2013.59

Goswami P, Akhter J, Mangla A, Suramya S, Jindal G, Ahmad S, Raisuddin S (2023) Downregulation of ATF-4 Attenuates the Endoplasmic Reticulum Stress-Mediated Neuroinflammation and Cognitive Impairment in Experimentally Induced Alzheimer's Disease Model. Mol Neurobiol :1–12. https://doi.org/10.1007/s12035-023-03861-3

Lopez-Grancha M, Bernardelli P, Moindrot N, Genet E, Vincent C, Roudieres V, Krick A, Sabuco J-F, Machnik D, Ibghi D (2021) A novel selective PKR inhibitor restores cognitive deficits and neurodegeneration in Alzheimer disease experimental models. J Pharmacol Exper Ther 378(3):262–275. https://doi.org/10.1124/jpet.121.000590

Goswami P, Afjal MA, Akhter J, Mangla A, Khan J, Parvez S, Raisuddin S (2020) Involvement of endoplasmic reticulum stress in amyloid β (1-42)-induced Alzheimer's like neuropathological process in rat brain. Brain Res Bull 165:108–117. https://doi.org/10.1016/j.brainresbull.2020.09.022

Borreca A, Valeri F, De Luca M, Ernst L, Russo A, Nobili A, Cordella A, Corsetti V, Amadoro G, Mercuri NB (2020) Transient upregulation of translational efficiency in prodromal and early symptomatic Tg2576 mice contributes to Aβ pathology. Neurobiol Dis 139:104787. https://doi.org/10.1016/j.nbd.2020.104787

Tapella L, Dematteis G, Moro M, Pistolato B, Tonelli E, Vanella VV, Giustina D, La Forgia A, Restelli E, Barberis E (2022) Protein synthesis inhibition and loss of homeostatic functions in astrocytes from an Alzheimer's disease mouse model: a role for ER-mitochondria interaction. Cell Death Dis 13(10):878. https://doi.org/10.1038/s41419-022-05324-4

Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J (2002) Involvement of double‐stranded RNA‐dependent protein kinase and phosphorylation of eukaryotic initiation factor‐2α in neuronal degeneration. J Neurochem 83(5):1215–1225. https://doi.org/10.1046/j.1471-4159.2002.01237.x

Picón-Pagès P, Gutiérrez DA, Barranco-Almohalla A, Crepin G, Tajes M, Ill-Raga G, Guix FX, Menéndez S, Arumí-Uría M, Vicente R (2020) Amyloid Beta‐Peptide Increases BACE1 Translation through the Phosphorylation of the Eukaryotic Initiation Factor‐2α. Oxid Med Cell Longevity 2020(1):2739459. https://doi.org/10.1155/2020/2739459

Paesler K, Xie K, Hettich MM, Siwek ME, Ryan DP, Schröder S, Papazoglou A, Broich K, Müller R, Trog A (2015) Limited effects of an eIF2αS51A allele on neurological impairments in the 5xFAD mouse model of Alzheimer's disease. Neural Plasticity 2015(1):825157. https://doi.org/10.1155/2015/825157

Yang W, Zhou X, Zimmermann HR, Cavener DR, Klann E, Ma T (2016) Repression of the eIF2α kinase PERK alleviates mGluR-LTD impairments in a mouse model of Alzheimer's disease. Neurobiol Aging 41:19–24. https://doi.org/10.1016/j.neurobiolaging.2016.02.005

Devi L, Ohno M. Deletion of the eIF2. PLoS One 8(10).

Briggs DI, Defensor E, Ardestani PM, Yi B, Halpain M, Seabrook G, Shamloo M (2017) Role of endoplasmic reticulum stress in learning and memory impairment and Alzheimer's disease-like neuropathology in the PS19 and APPSwe mouse models of tauopathy and amyloidosis. ENeuro 4(4). https://doi.org/10.1523/ENEURO.0025-17.2017

Johnson EC, Kang J (2016) A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer's disease. PeerJ 4:e2565. https://doi.org/10.7717/peerj.2565

Mercado G, Castillo V, Soto P, López N, Axten JM, Sardi SP, Hoozemans JJ, Hetz C (2018) Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson's disease. Neurobiol Dis 112:136–148. https://doi.org/10.1016/j.nbd.2018.01.004

Hoozemans J, Van Haastert E, Eikelenboom P, De Vos R, Rozemuller J, Scheper W (2007) Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun 354(3):707–711. https://doi.org/10.1016/j.bbrc.2007.01.043

Baek J, Mamula D, Tingstam B, Pereira M, He Y, Svenningsson P GRP78 level is altered in the brain, but not in plasma or cerebrospinal fluid in Parkinson's disease patients. Front Neurosci 13: 697. 2019. https://doi.org/10.3389/fnins.2019.00697

Mutez E, Nkiliza A, Belarbi K, de Broucker A, Vanbesien-Mailliot C, Bleuse S, Duflot A, Comptdaer T, Semaille P, Blervaque R (2014) Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson's disease. Neurobiol Dis 63:165–170. https://doi.org/10.1016/j.nbd.2013.11.007

Motawi TK, Al-Kady RH, Abdelraouf SM, Senousy MA. (2022) Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson's disease in rats: Targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p. Chem-Biol Interact 362:110002. https://doi.org/10.1016/j.cbi.2022.110002

Gupta S, Mishra A, Singh S (2021) Cardinal role of eukaryotic initiation factor 2 (eIF2α) in progressive dopaminergic neuronal death & DNA fragmentation: Implication of PERK: IRE1α: ATF6 axis in Parkinson's pathology. Cell Signal 81:109922. https://doi.org/10.1016/j.cellsig.2021.109922

Demmings MD, Tennyson EC, Petroff GN, Tarnowski-Garner HE, Cregan SP (2021) Activating transcription factor-4 promotes neuronal death induced by Parkinson's disease neurotoxins and α-synuclein aggregates. Cell Death Different 28(5):1627–1643. https://doi.org/10.1038/s41418-020-00688-6

Celardo I, Costa AC, Lehmann S, Jones C, Wood N, Mencacci NE, Mallucci GR, Loh SH, Martins LM. (2016) Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease. Cell death Dis 7(6):e2271. https://doi.org/10.1038/cddis.2016.173

Liu M, Qin L, Wang L, Tan J, Zhang H, Tang J, Shen X, Tan L, Wang C (2018) α‑synuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulum‑Golgi compartment. Mol Med Rep 18(1):322–332. https://doi.org/10.3892/mmr.2018.9002

Jiang P, Gan M, Ebrahim AS, Lin W-L, Melrose HL, Yen S-HC (2010) ER stress response plays an important role in aggregation of α-synuclein. Mol Neurodegen 5:1–15. https://doi.org/10.1186/1750-1326-5-56

Sun X, Aimé P, Dai D, Ramalingam N, Crary JF, Burke RE, Greene LA, Levy OA (2018) Guanabenz promotes neuronal survival via enhancement of ATF4 and parkin expression in models of Parkinson disease. Exp Neurol 303:95-107. https://doi.org/10.1016/j.expneurol.2018.01.015

Leitman J, Barak B, Benyair R, Shenkman M, Ashery U, Hartl FU, Lederkremer GZ (2014) ER stress-induced eIF2-alpha phosphorylation underlies sensitivity of striatal neurons to pathogenic huntingtin. PLoS One 9(3):e90803. https://doi.org/10.1371/journal.pone.0090803

Almeida LM, Oliveira Â, Oliveira JM, Pinho BR (2023) Stress response mechanisms in protein misfolding diseases: Profiling a cellular model of Huntington's disease. Arch Biochem Biophys 745:109711. https://doi.org/10.1016/j.abb.2023.109711

Reijonen S, Putkonen N, Nørremølle A, Lindholm D, Korhonen L (2008) Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 314(5):950–960. https://doi.org/10.1016/j.yexcr.2007.12.025

Sbodio JI, Snyder SH, Paul BD (2016) Transcriptional control of amino acid homeostasis is disrupted in Huntington's disease. Proc Natl Acad Sci USA 113(31):8843–8888. https://doi.org/10.1073/pnas.1608264113

Xu H, Bensalel J, Capobianco E, Lu ML, Wei J (2022) Impaired restoration of global protein synthesis contributes to increased vulnerability to acute ER stress recovery in Huntington's disease. Cell Mol Neurobiol 42(8):2757–2771. https://doi.org/10.1007/s10571-021-01137-9

Espina M, Di Franco N, Brañas-Navarro M, Navarro IR, Brito V, Lopez-Molina L, Costas-Insua C, Guzmán M, Ginés S (2023) The GRP78-PERK axis contributes to memory and synaptic impairments in Huntington's disease R6/1 mice. Neurobiol Dis 184:106225. https://doi.org/10.1016/j.nbd.2023.106225

Ganz J, Shacham T, Kramer M, Shenkman M, Eiger H, Weinberg N, Iancovici O, Roy S, Simhaev L, Da'adoosh B (2020) A novel specific PERK activator reduces toxicity and extends survival in Huntington's disease models. Sci Rep 10(1):6875. https://doi.org/10.1038/s41598-020-63899-4

Ilieva EV, Ayala V, Jové M, Dalfó E, Cacabelos D, Povedano M, Bellmunt MJ, Ferrer I, Pamplona R, Portero-Otín M (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130(12):3111–3123. https://doi.org/10.1093/brain/awm190

Parameswaran J, Zhang N, Braems E, Tilahun K, Pant DC, Yin K, Asress S, Heeren K, Banerjee A, Davis E (2023) Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2α-dependent ISR in C9ORF72 FTD/ALS. Elife 12:e85902. https://doi.org/10.7554/eLife.85902.sa2

Hetz C, Thielen P, Matus S, Nassif M, Kiffin R, Martinez G, Cuervo AM, Brown RH, Glimcher LH (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Gen Devel 23(19):2294–2306. https://doi.org/10.1101/gad.1830709

Cheng W, Wang S, Mestre AA, Fu C, Makarem A, Xian F, Hayes LR, Lopez-Gonzalez R, Drenner K, Jiang J (2018) C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat Commun 9(1):51. https://doi.org/10.1038/s41467-017-02495-z

Kikuchi H, Almer G, Yamashita S, Guégan C, Nagai M, Xu Z, Sosunov AA, McKhann GM, Przedborski S (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad USA 103(15):6025–6030. https://doi.org/10.1073/pnas.0509227103

Sun S, Sun Y, Ling S-C, Ferraiuolo L, McAlonis-Downes M, Zou Y, Drenner K, Wang Y, Ditsworth D, Tokunaga S (2015) Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc Natl Acad USA 112(50):E6993–E7002. https://doi.org/10.1073/pnas.1520639112

Oh YK, Shin KS, Yuan J, Kang SJ. (2008) Superoxide dismutase 1 mutants related to amyotrophic lateral sclerosis induce endoplasmic stress in neuro2a cells. J Neurochem 104(4):993–1005. https://doi.org/10.1111/j.1471-4159.2007.05053.x

Kim H-J, Raphael AR, LaDow ES, McGurk L, Weber RA, Trojanowski JQ, Lee VM, Finkbeiner S, Gitler AD, Bonini NM. (2014) Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46(2):152–160. https://doi.org/10.1038/ng.2853

Wang L, Popko B, Roos RP (2011) The unfolded protein response in familial amyotrophic lateral sclerosis. Hum Mol Genet 20(5):1008–1015. https://doi.org/10.1093/hmg/ddq546

Matus S, Lopez E, Valenzuela V, Nassif M, Hetz C (2013) Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS One 8(7):e66672. https://doi.org/10.1371/journal.pone.0066672

Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M, Barry N, Sigurdardottir A, Bertolotti A (2015) Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348(6231):239–242. https://doi.org/10.1126/science.aaa4484

Wang L, Popko B, Tixier E, Roos RP (2014) Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol Dis 71:317–324. https://doi.org/10.1016/j.nbd.2014.08.010

Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627–636. https://doi.org/10.1038/nn.2297

Medinas DB, González JV, Falcon P, Hetz C (2017) Fine-tuning ER stress signal transducers to treat amyotrophic lateral sclerosis. Front Mol Neurosci 10:216. https://doi.org/10.3389/fnmol.2017.00216

Marlin E, Valencia M, Peregrín N, Ferrero R, Nicolás MJ, Vinueza‐Gavilanes R, Pineda‐Lucena A, Artieda J, Arrasate M, Aragón T (2024) Pharmacological inhibition of the integrated stress response accelerates disease progression in an amyotrophic lateral sclerosis mouse model. Br J Pharmacol 181(3):495–508. https://doi.org/10.1111/bph.16260

Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, FitzGerald U (2013) Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun 1:1-15. https://doi.org/10.1186/2051-5960-1-37

Mháille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A, FitzGerald U (2008) Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 67(3):200–211. https://doi.org/10.1097/NEN.0b013e318165b239

McMahon J, McQuaid S, Reynolds R, FitzGerald U (2012) Increased expression of ER stress-and hypoxia-associated molecules in grey matter lesions in multiple sclerosis. Mult Sclerosis J 18(10):1437–1447. https://doi.org/10.1177/1352458512438455

Cunnea P, Mháille AN, McQuaid S, Farrell M, McMahon J, FitzGerald U (2011) Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis. Mult Sclerosis J 17(7):808–818. https://doi.org/10.1177/1352458511399114

Pernin F, Luo JXX, Cui Q-L, Blain M, Fernandes MG, Yaqubi M, Srour M, Hall J, Dudley R, Jamann H (2022) Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis. Brain 145(12):4320–4333. https://doi.org/10.1093/brain/awac075

Huang H, Miao L, Liang F, Liu X, Xu L, Teng X, Wang Q, Ridder WH, Shindler KS, Sun Y (2017) Neuroprotection by eIF2α-CHOP inhibition and XBP-1 activation in EAE/optic neuritiss. Cell Death Dis 8(7):e2936. https://doi.org/10.1038/cddis.2017.329

Yousuf MS, Samtleben S, Lamothe SM, Friedman TN, Catuneanu A, Thorburn K, Desai M, Tenorio G, Schenk GJ, Ballanyi K, Kurata HT, Simmen T, Kerr BJ (2020) Endoplasmic reticulum stress in the dorsal root ganglia regulates large-conductance potassium channels and contributes to pain in a model of multiple sclerosis. FASEB J 34(9):12577–12598. https://doi.org/10.1096/fj.202001163R

Lin W, Harding HP, Ron D, Popko B (2005) Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ. J Cell Biol 169(4):603–612. https://doi.org/10.1083/jcb.200502086

Lin W, Kunkler PE, Harding HP, Ron D, Kraig RP, Popko B (2008) Enhanced integrated stress response promotes myelinating oligodendrocyte survival in response to interferon-γ. Am J Pathol 173(5):1508–1517. https://doi.org/10.2353/ajpath.2008.080449

Chen Y, Podojil JR, Kunjamma RB, Jones J, Weiner M, Lin W, Miller SD, Popko B (2019) Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain 142(2):344–361. https://doi.org/10.1093/brain/awy322

Lin W, Bailey SL, Ho H, Harding HP, Ron D, Miller SD, Popko B (2007) The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J Clin Invest 117(2):448–456. https://doi.org/10.1172/JCI29571

Lin W, Lin Y, Li J, Fenstermaker AG, Way SW, Clayton B, Jamison S, Harding HP, Ron D, Popko B (2013) Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J Neurosci 33(14):5980–5991. https://doi.org/10.1523/JNEUROSCI.1636-12.2013

Hussien Y, Cavener DR, Popko B (2014) Genetic inactivation of PERK signaling in mouse oligodendrocytes: normal developmental myelination with increased susceptibility to inflammatory demyelination. Glia 62(5):680–691. https://doi.org/10.1002/glia.22634

Lin Y, Huang G, Jamison S, Li J, Harding HP, Ron D, Lin W (2014) PERK Activation Preserves the Viability and Function of Remyelinating Oligodendrocytes in Immune-Mediated Demyelinating Diseases. Am J Pathol 184(2):507–519. https://doi.org/10.1016/j.ajpath.2013.10.009

Lin W, Kemper A, Dupree JL, Harding HP, Ron D, Popko B (2006) Interferon-γ inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 129(5):1306–1318. https://doi.org/10.1093/brain/awl044

Way SW, Podojil JR, Clayton BL, Zaremba A, Collins TL, Kunjamma RB, Robinson AP, Brugarolas P, Miller RH, Miller SD (2015) Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nat Commun 6(1):6532. https://doi.org/10.1038/ncomms7532

Zhao J, Zhao G, Lang J, Sun B, Feng S, Li D, Sun G (2024) EXPRESS: Astragaloside IV ameliorated neuroinflammation and improved neurological functions in mice exposed to traumatic brain injury by modulating the PERK-eIF2α-ATF4 signaling pathway. J Invest Med 10815589241261293. https://doi.org/10.1177/10815589241261293

Petrov T, Underwood BD, Braun B, Alousi SS, Rafols JA (2001) Upregulation of iNOS expression and phosphorylation of eIF-2 α are paralleled by suppression of protein synthesis in rat hypothalamus in a closed head trauma model. J Neurotrauma 18(8):799–812. https://doi.org/10.1089/089771501316919166

Tan H-P, Guo Q, Hua G, Chen J-X, Liang J-C (2018) Inhibition of endoplasmic reticulum stress alleviates secondary injury after traumatic brain injury. Neur Regener Res 13(5):827–836. https://doi.org/10.4103/1673-5374.232477

Dash PK, Hylin MJ, Hood KN, Orsi SA, Zhao J, Redell JB, Tsvetkov AS, Moore AN (2015) Inhibition of eukaryotic initiation factor 2 alpha phosphatase reduces tissue damage and improves learning and memory after experimental traumatic brain injury. J Neurotrauma 32(20):1608–1620. https://doi.org/10.1089/neu.2014.3772

Sun D, Wang J, Liu X, Fan Y, Yang M, Zhang J (2020) Dexmedetomidine attenuates endoplasmic reticulum stress-induced apoptosis and improves neuronal function after traumatic brain injury in mice. Brain Res 1732:146682. https://doi.org/10.1016/j.brainres.2020.146682

Begum G, Yan HQ, Li L, Singh A, Dixon CE, Sun D (2014) Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury. J Neurosci 34(10):3743–3755. https://doi.org/10.1523/JNEUROSCI.2872-13.2014

Lucke-Wold BP, Logsdon AF, Turner RC, Huber JD, Rosen CL (2017) Endoplasmic reticulum stress modulation as a target for ameliorating effects of blast induced traumatic brain injury. J Neurotrauma 34(S1):S62–S70. https://doi.org/10.1089/neu.2016.4680

Liu S, Jin R, Xiao AY, Chen R, Li J, Zhong W, Feng X, Li G (2019) Induction of neuronal PI3Kγ contributes to endoplasmic reticulum stress and long-term functional impairment in a murine model of traumatic brain injury. Neurotherapeutics 16(4):1320–1334. https://doi.org/10.1007/s13311-019-00748-x

Hood KN, Zhao J, Redell JB, Hylin MJ, Harris B, Perez A, Moore AN, Dash PK (2018) Endoplasmic reticulum stress contributes to the loss of newborn hippocampal neurons after traumatic brain injury. J Neurosci 38(9):2372–2384. https://doi.org/10.1523/JNEUROSCI.1756-17.2018

Wang CF, Zhao CC, He Y, Li ZY, Liu WL, Huang XJ, Deng YF, Li WP (2019) Mild hypothermia reduces endoplasmic reticulum stress‐induced apoptosis and improves neuronal functions after severe traumatic brain injury. Brain Behav 9(4):e01248. https://doi.org/10.1002/brb3.1248

Wang Z-f, Gao C, Chen W, Gao Y, Wang H-c, Meng Y, Luo C-l, Zhang M-y, Chen G, Chen X-p (2019) Salubrinal offers neuroprotection through suppressing endoplasmic reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model. Neurobiol Learn Mem 161:12–25. https://doi.org/10.1016/j.nlm.2019.03.002

Underwood BD (2001) Phosphorylation of eukaryotic initiation factor 2 alpha and release of cytochrome c following traumatic brain injury in the rat. Wayne State University.

Chen X, Mi L, Gu G, Gao X, Gao X, Shi M, Chai Y, Chen F, Yang W, Zhang J (2022) Dysfunctional endoplasmic reticulum-mitochondrion coupling is associated with endoplasmic reticulum stress-induced apoptosis and neurological deficits in a rodent model of severe head injury. J Neurotrauma 39(7-8):560–576. https://doi.org/10.1089/neu.2021.0347

Wu M-Y, Gao F, Tang J-F, Shen J-C, Gao R, Dang B-Q, Chen G (2021) Possible mechanisms of the PERK pathway on neuronal apoptosis in a rat model of surgical brain injury. Am J Transl Res 13(2):732.

Sun D, Gu G, Wang J, Chai Y, Fan Y, Yang M, Xu X, Gao W, Li F, Yin D (2017) Administration of tauroursodeoxycholic acid attenuates early brain injury via Akt pathway activation. Front Cell Neurosci 11:193. https://doi.org/10.3389/fncel.2017.00193

Liu H, He S, Li C, Wang J, Zou Q, Liao Y, Chen R (2022) Tetrandrine alleviates inflammation and neuron apoptosis in experimental traumatic brain injury by regulating the IRE1α/JNK/CHOP signal pathway. Brain Behav 12(12):e2786. https://doi.org/10.1002/brb3.2786

Li L, Luo Q, Shang B, Yang X, Zhang Y, Pan Q, Wu N, Tang W, Du D, Sun X (2022) Selective activation of cannabinoid receptor-2 reduces white matter injury via PERK signaling in a rat model of traumatic brain injury. Exper Neurol 347:113899. https://doi.org/10.1016/j.expneurol.2021.113899

Deng C, Yi R, Fei M, Li T, Han Y, Wang H (2021) Naringenin attenuates endoplasmic reticulum stress, reduces apoptosis, and improves functional recovery in experimental traumatic brain injury. Brain Res 1769:147591. https://doi.org/10.1016/j.brainres.2021.147591

Faulkner MB, Rizk M, Bazzi Z, Dysko RC, Zhang Z (2023) Sex-Specific Effects of Buprenorphine on Endoplasmic Reticulum Stress, Abnormal Protein Accumulation, and Cell Loss After Pediatric Mild Traumatic Brain Injury in Mice. Neurotrauma Rep 4(1):573–585. https://doi.org/10.1089/neur.2023.0051

Chang L, Liu X, Chen J, Liu H, Wang G, Wang G, Liao X, Shen X (2022) Attenuation of activated eIF2α signaling by ISRIB treatment after spinal cord injury improves locomotor function. J Mol Neurosci 1–13. https://doi.org/10.1007/s12031-021-01920-9

Logsdon AF, Turner RC, Lucke-Wold BP, Robson MJ, Naser ZJ, Smith KE, Matsumoto RR, Huber JD, Rosen CL (2014) Altering endoplasmic reticulum stress in a model of blast-induced traumatic brain injury controls cellular fate and ameliorates neuropsychiatric symptoms. Front Cell Neurosci 8:421. https://doi.org/10.3389/fncel.2014.00421

Ling Y, Ramalingam M, Lv X, Niu D, Zeng Y, Qiu Y, Si Y, Guo T, Ni Y, Zhang J (2024) Human neural stem cell secretome relieves endoplasmic reticulum stress-induced apoptosis and improves neuronal functions after traumatic brain injury in a rat model. J Mol Histol 1–20. https://doi.org/10.1007/s10735-024-10192-7

Li L, Tan H-P, Liu C-Y, Yu L-T, Wei D-N, Zhang Z-C, Lu K, Zhao K-S, Maegele M, Cai D-Z (2019) Polydatin prevents the induction of secondary brain injury after traumatic brain injury by protecting neuronal mitochondria. Neur Reg Res 14(9):1573–1582. https://doi.org/10.4103/1673-5374.255972

Wang F, Zhang C, Zhang Q, Li J, Xue Y, He X, Li F (2023) Lithium ameliorates spinal cord injury through endoplasmic reticulum stress-regulated autophagy and alleviated apoptosis through IRE1 and PERK/eIF2α signaling pathways. J Neurorestoratol 11(4):100081. https://doi.org/10.1016/j.jnrt.2023.100081

Lucke-Wold BP, Turner RC, Logsdon AF, Nguyen L, Bailes JE, Lee JM, Robson MJ, Omalu BI, Huber JD, Rosen CL (2016) Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy. J Neurosurg 124(3):687–702. https://doi.org/10.3171/2015.3.JNS141802

Kwon SK, Ahn M, Song H-J, Kang SK, Jung S-B, Harsha N, Jee S, Moon JY, Suh K-S, Do Lee S. (2015) Nafamostat mesilate attenuates transient focal ischemia/reperfusion-induced brain injury via the inhibition of endoplasmic reticulum stress. Brain Res 1627:12–20. https://doi.org/10.1016/j.brainres.2015.09.013

Huang T, Zhao J, Guo D, Pang H, Zhao Y, Song J (2018) Curcumin mitigates axonal injury and neuronal cell apoptosis through the PERK/Nrf2 signaling pathway following diffuse axonal injury. Neuroreport 29(8):661–677. https://doi.org/10.1097/WNR.0000000000001015

Rubovitch V, Barak S, Rachmany L, Goldstein RB, Zilberstein Y, Pick CG (2015) The neuroprotective effect of salubrinal in a mouse model of traumatic brain injury. Neuromol Med 17:58–70. https://doi.org/10.1007/s12017-015-8340-3

Saraswat Ohri S, Forston MD, Myers SA, Brown BL, Andres KR, Howard RM, Gao Y, Liu Y, Cavener DR, Hetman M (2024) Oligodendrocyte‐selective deletion of the eIF2α kinase Perk/Eif2ak3 limits functional recovery after spinal cord injury. Glia 72(7):1259–1272. https://doi.org/10.1002/glia.24525

Sen T, Gupta R, Kaiser H, Sen N (2017) Activation of PERK elicits memory impairment through inactivation of CREB and downregulation of PSD95 after traumatic brain injury. J Neurosci 37(24):5900–5911. https://doi.org/10.1523/JNEUROSCI.2343-16.2017

Huang T-c, Luo L, Jiang S-h, Chen C, He H-y, Liang C-f, Li W-s, Wang H, Zhu L, Wang K (2021) Targeting integrated stress response regulates microglial M1/M2 polarization and attenuates neuroinflammation following surgical brain injury in rat. Cell Signal 85:110048. https://doi.org/10.1016/j.cellsig.2021.110048

Zhou W, Liang Y, Liao X, Tong L, Du W, Fu W, Tian S, Deng Y, Jiang X (2024) ISRIB improves white matter injury following TBI by inhibiting NCOA4-mediated ferritinophagy. Neurochem Intl 177:105744. https://doi.org/10.1016/j.neuint.2024.105744

Krukowski K, Nolan A, Frias ES, Grue K, Becker M, Ureta G, Delgado L, Bernales S, Sohal VS, Walter P (2020) Integrated stress response inhibitor reverses sex-dependent behavioral and cell-specific deficits after mild repetitive head trauma. J Neurotrauma 37(11):1370–1380. https://doi.org/10.1089/neu.2019.6827

Ilyin NP, Galstyan DS, Demin KA, Kalueff AV (2023) Behavioral, Genomic and Neurochemical Deficits Evoked by Neurotrauma in Adult Zebrafish (Danio rerio). J Evol Biochem Physiol 59(6):2179–2195. https://doi.org/10.1134/S0022093023060224

Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL (2020) The integrated stress response and phosphorylated eukaryotic initiation factor 2α in neurodegeneration. J Neuropathol Exper Neurol 79(2):123–143. https://doi.org/10.1093/jnen/nlz129

Korneeva NL (2022) Integrated stress response in neuronal pathology and in health. Biochemistry (Moscow) 87(Suppl 1):S111–S127. https://doi.org/10.1134/S0006297922140103

Romero-Ramírez L, Nieto-Sampedro M, Barreda-Manso MA (2017) Integrated stress response as a therapeutic target for CNS injuries. BioMed Res Intl 2017(1):6953156. https://doi.org/10.1155/2017/6953156

Rabouw HH, Langereis MA, Anand AA, Visser LJ, de Groot RJ, Walter P, van Kuppeveld FJ (2019) Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci USA 116(6):2097–2102. https://doi.org/10.1073/pnas.1815767116

Sidrauski C, McGeachy AM, Ingolia NT, Walter P (2015) The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife 4:e05033. https://doi.org/10.7554/eLife.05033.016

Cnop M, Ladriere L, Hekerman P, Ortis F, Cardozo AK, Dogusan Z, Flamez D, Boyce M, Yuan J, Eizirik DL (2007) Selective inhibition of eukaryotic translation initiation factor 2α dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic β-cell dysfunction and apoptosis. J Biol Chem 282(6):3989–3997. https://doi.org/10.1074/jbc.M607627200

Zadorozhnii PV, Kiselev VV, Kharchenko AV (2022) In Silico ADME Profiling of Salubrinal and Its Analogues. Fut Pharmacol. https://doi.org/10.3390/futurepharmacol2020013

Matsuoka M, Komoike Y (2015) Experimental evidence shows salubrinal, an eIF2α dephosphorylation inhibitor, reduces xenotoxicant-induced cellular damage. Intl J Mol Sci 16(7):16275–16287. https://doi.org/10.3390/ijms160716275

Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D (2005) A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307(5711):935–939. https://doi.org/10.1126/science.1101902

Jeon Y-J, Kim JH, Shin J-I, Jeong M, Cho J, Lee K (2016) Salubrinal-mediated upregulation of eIF2α phosphorylation increases doxorubicin sensitivity in MCF-7/ADR cells. Mol Cells 39(2):129–135. https://doi.org/10.14348/molcells.2016.2243

Cankara FN, Kuş MS, Günaydın C, Şafak S, Bilge SS, Ozmen O, Tural E, Kortholt A (2022) The beneficial effect of salubrinal on neuroinflammation and neuronal loss in intranigral LPS-induced hemi-Parkinson disease model in rats. Immunopharmacol Immunotoxicol 44(2):168–177. https://doi.org/10.1080/08923973.2021.2023174

Chen Y, Li B, Xu Y, Zhou T, Zhao C, Zhao J (2023) Sal003 alleviated intervertebral disc degeneration by inhibiting apoptosis and extracellular matrix degradation through suppressing endoplasmic reticulum stress pathway in rats. Front Pharmacol 14:1095307. https://doi.org/10.3389/fphar.2023.1095307

Fujita R, Ono Y (2016) eIF2α, a potential target for stem cell-based therapies. Stem Cell Invest 3. https://doi.org/10.21037/sci.2016.07.01

Lean G, Halloran M, Mariscal O, Jamet S, Lumb J-P, Crist C (2019) Ex vivo expansion of skeletal muscle stem cells with a novel small compound inhibitor of eIF2α dephosphorylation. bioRxiv:567461. https://doi.org/10.1101/567461

Wu Y, Zhang H, Wang Y, Zhang Y, Hong Z, Wang D (2024) Sephin1 enhances integrated stress response and autophagy to alleviate myocardial ischemia-reperfusion injury in mice. Biomed Pharmacother 176:116869. https://doi.org/10.1016/j.biopha.2024.116869

Axten JM, Romeril SP, Shu A, Ralph J, Medina JR, Feng Y, Li WHH, Grant SW, Heerding DA, Minthorn E (2013) Discovery of GSK2656157: an optimized PERK inhibitor selected for preclinical development. ACS Med Chem Lett 4(10):964–968. https://doi.org/10.1021/ml400228e

Krishnamoorthy J, Rajesh K, Mirzajani F, Kesoglidou P, Papadakis A, Koromilas AE (2014) Evidence for eIF2α phosphorylation-independent effects of GSK2656157, a novel catalytic inhibitor of PERK with clinical implications. Cell Cycle 13(5):801–816. https://doi.org/10.4161/cc.27726

Dhir N, Jain A, Sharma AR, Prakash A, Radotra BD, Medhi B (2023) PERK inhibitor, GSK2606414, ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2ɑ/ATF4/CHOP signaling. Metab Brain Dis 38(4):1177–1792. https://doi.org/10.1007/s11011-023-01183-w

Axten JM (2017) Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) inhibitors: a patent review (2010-2015). Exp Opin Ther Patents 27(1):37–48. https://doi.org/10.1080/13543776.2017.1238072

Yu Z-Z, Xu B-Q, Wang Y-Y, Zhang P-W, Shu Y-B, Shi Z (2023) GSK2606414 Sensitizes ABCG2-Overexpressing Multidrug-Resistant Colorectal Cancer Cells to Chemotherapeutic Drugs. Biomedicines. https://doi.org/10.3390/biomedicines11113103

Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nat Revs Dis Primers 2(1):1–20. https://doi.org/10.1038/nrdp.2016.65

Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C (2021) Neuroinflammation and depression: A review. Eur J Neurosci 53(1):151–171. https://doi.org/10.1111/ejn.14720

Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov Today 25(7):1270–1276. https://doi.org/10.1016/j.drudis.2020.05.001

Mao J, Hu Y, Ruan L, Ji Y, Lou Z (2019) Role of endoplasmic reticulum stress in depression. Mol med Rep 20(6):4774–4780. https://doi.org/10.3892/mmr.2019.10789

Yoshino Y, Dwivedi Y (2020) Elevated expression of unfolded protein response genes in the prefrontal cortex of depressed subjects: Effect of suicide. J Affect Disord 262:229–236. https://doi.org/10.1016/j.jad.2019.11.001

Munshi S, Alarbi A, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall L, Victor T, Aupperle R, Khalsa S, Paulus M (2024) Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. Res Square (in press). https://doi.org/10.21203/rs.3.rs-3564760/v1

Tang M, Liu T, Shen Y, Wang L, Xue Y, Zhao T, Xie K, Gong Z, Yin T (2023) Potential antidepressant-like effects of N-3 polyunsaturated fatty acids through inhibition of endoplasmic reticulum stress. Psychopharmacology 240(9):1877–1889. https://doi.org/10.1007/s00213-023-06377-9

Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, Byrne EM, Blackwood DH, Boomsma DI, Cichon S, Heath AC, Holsboer F, Lucae S, Madden PA, Martin NG, McGuffin P, Muglia P, Noethen MM, Penninx BP, Pergadia ML, Potash JB, Rietschel M, Lin D, Müller-Myhsok B, Shi J, Steinberg S, Grabe HJ, Lichtenstein P, Magnusson P, Perlis RH, Preisig M, Smoller JW, Stefansson K, Uher R, Kutalik Z, Tansey KE, Teumer A, Viktorin A, Barnes MR, Bettecken T, Binder EB, Breuer R, Castro VM, Churchill SE, Coryell WH, Craddock N, Craig IW, Czamara D, De Geus EJ, Degenhardt F, Farmer AE, Fava M, Frank J, Gainer VS, Gallagher PJ, Gordon SD, Goryachev S, Gross M, Guipponi M, Henders AK, Herms S, Hickie IB, Hoefels S, Hoogendijk W, Hottenga JJ, Iosifescu DV, Ising M, Jones I, Jones L, Jung-Ying T, Knowles JA, Kohane IS, Kohli MA, Korszun A, Landen M, Lawson WB, Lewis G, Macintyre D, Maier W, Mattheisen M, McGrath PJ, McIntosh A, McLean A, Middeldorp CM, Middleton L, Montgomery GM, Murphy SN, Nauck M, Nolen WA, Nyholt DR, O'Donovan M, Oskarsson H, Pedersen N, Scheftner WA, Schulz A, Schulze TG, Shyn SI, Sigurdsson E, Slager SL, Smit JH, Stefansson H, Steffens M, Thorgeirsson T, Tozzi F, Treutlein J, Uhr M, van den Oord EJ, Van Grootheest G, Völzke H, Weilburg JB, Willemsen G, Zitman FG, Neale B, Daly M, Levinson DF, Sullivan PF (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 18(4):497–511. https://doi.org/10.1038/mp.2012.21

Mei L, Gao Y, Chen M, Zhang X, Yue W, Zhang D, Yu H (2022) Overlapping common genetic architecture between major depressive disorders and anxiety and stress-related disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 113:110450. https://doi.org/10.1016/j.pnpbp.2021.110450

Lee PH, Anttila V, Won H, Feng Y-CA, Rosenthal J, Zhu Z, Tucker-Drob EM, Nivard MG, Grotzinger AD, Posthuma D (2019) Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179(7):1469–1482. https://doi.org/10.1016/j.cell.2019.11.020

Li M-X, Li Q, Sun X-J, Luo C, Li Y, Wang Y-N, Chen J, Gong C-Z, Li Y-J, Shi L-P (2019) Increased Homer1-mGluR5 mediates chronic stress-induced depressive-like behaviors and glutamatergic dysregulation via activation of PERK-eIF2α. Prog Neuro-Psychopharmacol Biol Psychiatry 95:109682. https://doi.org/10.1016/j.pnpbp.2019.109682

Liu K, Qu Y, Li B, Zeng N, Yao G, Wu X, Xu H, Yan C, Wu L (2024) GRP94 in cerebrospinal fluid may contribute to a potential biomarker of depression: Based on proteomics. J Psychiatr Res 169:328–340. https://doi.org/10.1016/j.jpsychires.2023.11.028

Karaağaç M, Ak M, Kurar E, Uguz F, Kutlu S (2023) Investigation of the effects of antidepressant treatment on hippocampus and hypothalamus endoplasmic reticulum stress in chronic mild stress induced depression in rats. Turk J Clin Psychiatry 26(4):238–247. https://doi.org/10.5505/kpd.2023.43410

Xu XF, meng Shi M, ying Luo M, dan Liu D, ming Guo D, Ling C, Zhong XL, Xu Y, Cao WY (2022) Targeting perk mediated endoplasmic reticulum stress attenuates neuroinflammation and alleviates lipopolysaccharide-induced depressive-like behavior in male mice. Intl Immunopharmacol 111:109092. https://doi.org/10.1016/j.intimp.2022.109092

Miquel-Rio L, Sarriés-Serrano U, Sancho-Alonso M, Florensa-Zanuy E, Paz V, Ruiz-Bronchal E, Manashirov S, Campa L, Pilar-Cuéllar F, Bortolozzi A (2024) ER stress in mouse serotonin neurons triggers a depressive phenotype alleviated by ketamine targeting eIF2α signaling. Iscience 27(5). https://doi.org/10.1016/j.isci.2024.109787

Hosak L, Hosakova J (2015) The complex etiology of schizophrenia-general state of the art. Neuroendocrinol Lett 36(7):631–637.

McCutcheon RA, Marques TR, Howes OD. (2020) Schizophrenia-an overview. JAMA Psychiatry 77(2):201-210. https://doi.org/10.1001/jamapsychiatry.2019.3360

Qu M, Tang F, Wang L, Yan H, Han Y, Yan J, Yue W, Zhang D (2008) Associations of ATF4 gene polymorphisms with schizophrenia in male patients. Am J Med Genet Part B: Neuropsychiatric Genet 147(6):732–736. https://doi.org/10.1002/ajmg.b.30675

Carter CJ (2007) eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schiz Bull 33(6):1343–1353. https://doi.org/10.1093/schbul/sbm007

Aryal S, Bonanno K, Song B, Mani D, Keshishian H, Carr SA, Sheng M, Dejanovic B (2023) Deep proteomics identifies shared molecular pathway alterations in synapses of patients with schizophrenia and bipolar disorder and mouse model. Cell Rep 42(5). https://doi.org/10.1016/j.celrep.2023.112497

Ifhar LS, Ene HM, Ben-Shachar D (2019) Impaired heme metabolism in schizophrenia-derived cell lines and in a rat model of the disorder: Possible involvement of mitochondrial complex I. Eur Neuropsychopharmacol 29(5):577–589. https://doi.org/10.1016/j.euroneuro.2019.03.011

Menéndez-Valle I, Cachán-Vega C, Boga JA, González-Blanco L, Antuña E, Potes Y, Caballero B, Vega-Naredo I, Saiz P, Bobes J (2023) Differential Cellular Interactome in Schizophrenia and Bipolar Disorder-Discriminatory Biomarker Role. Antioxidants 12(11):1948. https://doi.org/10.3390/antiox12111948

Kabir Z, Che A, Fischer D, Rice R, Rizzo B, Byrne M, Glass M, De Marco Garcia N, Rajadhyaksha A (2017) Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α. Mol Psychiatry 22(8):1096–1109. https://doi.org/10.1038/mp.2017.124

Wang X, Ye F, Wen Z, Guo Z, Yu C, Huang W-K, Rojas Ringeling F, Su Y, Zheng W, Zhou G (2021) Structural interaction between DISC1 and ATF4 underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders. Mol Psychiatry 26(4):1346–1360. https://doi.org/10.1038/s41380-019-0485-2

Trinh MA, Kaphzan H, Wek RC, Pierre P, Cavener DR, Klann E (2012) Brain-specific disruption of the eIF2α kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep 1(6):676–688. https://doi.org/10.1016/j.celrep.2012.04.010

Kim P, Scott MR, Meador-Woodruff JH (2021) Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Mol Psychiatry 26(4):1321–1331. https://doi.org/10.1038/s41380-019-0537-7

Anderson IM, Haddad PM, Scott J (2012) Bipol Disordr. BMJ 345. https://doi.org/10.1136/bmj.e8508

Pfaffenseller B, Wollenhaupt-Aguiar B, Fries GR, Colpo GD, Burque RK, Bristot G, Ferrari P, Ceresér KMM, Rosa AR, Klamt F, Kapczinski F (2014) Impaired endoplasmic reticulum stress response in bipolar disorder: cellular evidence of illness progression. Intl J Neuropsychopharmacol 17(9):1453–1463. https://doi.org/10.1017/S1461145714000443

Hayashi A, Kasahara T, Kametani M, Toyota T, Yoshikawa T, Kato T (2009) Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. Intl J Neuropsychopharmacol 12(1):33–43. https://doi.org/10.1017/S1461145708009358

Bengesser SA, Reininghaus EZ, Lackner N, Birner A, Fellendorf FT, Platzer M, Kainzbauer N, Tropper B, Hörmanseder C, Queissner R, Kapfhammer H-P, Wallner-Liebmann SJ, Fuchs R, Petek E, Windpassinger C, Schnalzenberger M, Reininghaus B, Evert B, Waha A (2018) Is the molecular clock ticking differently in bipolar disorder? Methylation analysis of the clock gene ARNTL. World J Biol Psychiatry 19 (Suppl. 2):S21S9. https://doi.org/10.1080/15622975.2016.1231421

So J, Warsh JJ, Li PP (2007) Impaired Endoplasmic Reticulum Stress Response in B-Lymphoblasts From Patients With Bipolar-I Disorder. Biol Psychiatry 62(2):141–147. https://doi.org/10.1016/j.biopsych.2006.10.014

Ting Z (2023) Druggable causal genes of bipolar disorder identified through Mendelian Randomization analysis offer a route to intervention in integrated stress response. medRxiv:2023.12. 20.23300345. https://doi.org/10.1101/2023.12.20.23300345

Asalgoo S, Jahromi G, Meftahi G, Sahraei H (2015) Posttraumatic stress disorder (ptsd): Mechanisms and possible treatments. Neurophysiology 47:482–489. https://doi.org/10.1007/s11062-016-9559-9

Wen L, Xiao B, Shi Y, Han F (2017) PERK signalling pathway mediates single prolonged stress-induced dysfunction of medial prefrontal cortex neurons. Apoptosis 22:753–768. https://doi.org/10.1007/s10495-017-1371-5

Wen L, Han F, Shi Y, Li X (2016) Role of the endoplasmic reticulum pathway in the medial prefrontal cortex in post-traumatic stress disorder model rats. J Mol Neurosci 59:471–482. https://doi.org/10.1007/s12031-016-0755-2

Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217-238. https://doi.org/10.1038/npp.2009.110

Jian M, Luo Y-X, Xue Y-X, Han Y, Shi H-S, Liu J-F, Yan W, Wu P, Meng S-Q, Deng J-H (2014) eIF2α dephosphorylation in basolateral amygdala mediates reconsolidation of drug memory. J Neurosci 34(30):10010–100021. https://doi.org/10.1523/JNEUROSCI.0934-14.2014

Werner CT, Stefanik MT, Milovanovic M, Caccamise A, Wolf ME (2018) Protein translation in the nucleus accumbens is dysregulated during cocaine withdrawal and required for expression of incubation of cocaine craving. J Neurosci 38(11):2683–2697. https://doi.org/10.1523/JNEUROSCI.2412-17.2018

Huang W, Placzek AN, Viana Di Prisco G, Khatiwada S, Sidrauski C, Krnjević K, Walter P, Dani JA, Costa-Mattioli M (2016) Translational control by eIF2α phosphorylation regulates vulnerability to the synaptic and behavioral effects of cocaine. Elife 5:e12052. https://doi.org/10.7554/eLife.12052

Placzek AN, Prisco GVD, Khatiwada S, Sgritta M, Huang W, Krnjević K, Kaufman RJ, Dani JA, Walter P, Costa-Mattioli M (2016) eIF2α-mediated translational control regulates the persistence of cocaine-induced LTP in midbrain dopamine neurons. Elife 5:e17517. https://doi.org/10.7554/eLife.17517.011

Placzek AN, Molfese DL, Khatiwada S, Viana Di Prisco G, Huang W, Sidrauski C, Krnjević K, Amos CL, Ray R, Dani JA (2016) Translational control of nicotine-evoked synaptic potentiation in mice and neuronal responses in human smokers by eIF2α. Elife 5:e12056. https://doi.org/10.7554/eLife.12056.010

Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475. https://doi.org/10.1146/annurev.physiol.66.032102.112534

Melas P, Qvist J, Deidda M, Upreti C, Wei Y, Sanna F, Fratta W, Scherma M, Fadda P, Kandel D (2018) Cannabinoid modulation of eukaryotic initiation factors (eIF2α and eIF2B1) and behavioral cross-sensitization to cocaine in adolescent rats. Cell Rep 22: 2909–2923. https://doi.org/10.1016/j.celrep.2018.02.065

Liu J, Yi S, Shi W, Zhang G, Wang S, Qi Q, Cong B, Li Y (2021) The pathology of morphine-inhibited nerve repair and morphine-induced nerve damage is mediated via endoplasmic reticulum stress. Front Neurosci 15: 618190. https://doi.org/10.3389/fnins.2021.618190

Lin T-T, Qu J, Wang C-Y, Yang X, Hu F, Hu L, Wu X-F, Jiang C-Y, Liu W-T, Han Y (2020) Rescue of HSP70 in spinal neurons alleviates opioids-induced hyperalgesia via the suppression of endoplasmic reticulum stress in rodents. Front Cell Devel Biol 8:269. https://doi.org/10.3389/fcell.2020.00269

Biever A, Boubaker-Vitre J, Cutando L, Gracia-Rubio I, Costa-Mattioli M, Puighermanal E, Valjent E (2017) Repeated exposure to D-amphetamine decreases global protein synthesis and regulates the translation of a subset of mRNAs in the striatum. Front Mol Neurosci 9:165. https://doi.org/10.3389/fnmol.2016.00165

Chen G, Yu G, Yong Z, Yan H, Su R, Wang H (2021) A large dose of methamphetamine inhibits drug‑evoked synaptic plasticity via ER stress in the hippocampus. Mol Med Rep 23(4):1–. https://doi.org/10.3892/mmr.2021.11917

Xue B, Fitzgerald CA, Jin D-Z, Mao L-M, Wang JQ (2016) Amphetamine elevates phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the rat forebrain via activating dopamine D1 and D2 receptors. Brain Res 1646:459–466. https://doi.org/10.1016/j.brainres.2016.06.027