СИНХРОНИЗИРОВАННАЯ АКТИВНОСТЬ ОКСИДОРЕДУКТАЗ В ОТДЕЛАХ МОЗГА И КАМЕРАХ СЕРДЦА Scorpaena porcus Linnaeus, 1758 ПРИ ОСТРОЙ ГИПОКСИИ
PDF

Ключевые слова

рыбы
гипоксия
мозг
сердце
МДГ
ЛДГ

Аннотация

Проведено сравнение активности оксидоредуктаз энергетического метаболизма – малатдегидрогеназы (МДГ, 1.1.1.37) и лактатдегидрогеназы (ЛДГ, 1.1.1.27) в отделах мозга - продолговатом мозге (ПМ) и переднем, промежуточном, среднем мозге (СППМ) и камерах сердца – предсердии и желудочке черноморской скорпены в условиях острой гипоксии (0.9–1.2 мг O2·л–1, 90 мин). В мозге и сердце активность МДГ была существенно выше ЛДГ (р < 0.05), что характерно для оксифильных тканей. Активность МДГ ПМ и предсердия оказалась выше таковой в СППМ и желудочке соответственно. При острой гипоксии отмечались специфические сдвиги энергетического метаболизма в структурах мозга и сердца в виде двух паттернов изменения активности оксидоредуктаз. При гипоксии в ПМ и предсердии активность МДГ существенно уменьшалась (р < 0.05). В СППМ и желудочке сердца отмечалась выраженная активация ЛДГ (р < 0.05). Предполагается, что сходство метаболических реакций ПМ и предсердия определяется функционированием встроенных в них механизмов генерации респираторного и сердечного ритма, связанных с регулируемыми цАМФ (производным АТФ) HCN-каналами. При нормоксии интенсивные электрические осцилляции ПМ и предсердия требуют высоких энергозатрат, которые обеспечиваются за счет аэробного гликолиза; при гипоксии падение синтеза АТФ способствует инактивации HCN-каналов и переключению дыхательной и сердечной функции в выгодный для выживания скорпены режим супрессии. При кислородном голодании переход к анаэробному гликолизу в СППМ и желудочке сердца скорпены обеспечивает прежде всего сохранение их целостности.

https://doi.org/10.31857/S0044452922060055
PDF

Литература

Ostadal B (2014) Hypoxia and the heart of poikilotherms. Curr Res Cardiol 1:28-32.

Chesnokova NP, Ponukalina EV, Bizenkova MN (2006) Modern conceptions of hypoxia pathogenesis. Hypoxia classification and the starters of its development. Modern Science-Intensive Technol 5:23–27.

Lutz PL, Nilsson GE, Peréz-Pinzón MA (1996) Anoxia tolerant animals from a neurobiological perspective. Comp Biochem Physiol B Biochem Mol Biol 113:3–13. https://doi.org/10.1016/0305-0491(95)02046-2

Nilsson GE, Lutz PL Anoxia tolerant brains (2004) J Cereb Blood Flow Metab 24:475–486. https://doi.org/10.1097/00004647-200405000-00001

Grimes AC, Kirby ML (2009) The outflow tract of the heart in fishes: anatomy, genes and evolution. J Fish Biol 74:983–1036. https://doi.org/10.1111/j.1095-8649.2008.02125.x

Milton SL, Dawson-Scully K (2013) Alleviating brain stress: what alternative animal models have revealed about therapeutic targets for hypoxia and anoxia. Future Neurol 8:287–301. https://doi.org/ 10.2217/fnl.13.12

Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920. https://doi.org/ 10.1242/jeb.037473

Soldatov AA, Andreenko TI, Kukhareva TA, Andreeva AYu, Kladchenko ES (2021) Catalase and Superoxide Dismutase Activity in Erythrocytes and the Methemoglobin Level in Blood of the Black Scorpionfish (Scorpaena porcus, Linnaeus 1758) Exposed to Acute Hypoxia. Russ J Marine Biol 47:283–289. https://doi.org/10.1134/S106307402104012X

Lushchak VI, Bahnjukova TV, Storey KB (1998) Effect of hypoxia on the activity and binding of glycolytic and associated enzymes in sea scorpion tissues. Braz J Med Biol Res 31:1059–1067. https://doi.org/10.1590/s0100-879x1998000800005

Kolesnikova EE, Soldatov AA, Golovina IV, Sysoeva IV, Sysoev AA, Kukhareva TA (2021) Activity of Energy Metabolism Enzymes and the Adenylate System in Heart Chambers of a Black Sea Scorpionfish (Scorpaena porcus L.) under Acute Hypoxia. J Evol Biochem Physiol 57:1050–1059. https://doi.org/10.1134/S0022093021050070

Kolesnikova EE, Soldatov AA, Golovina IV, Sysoeva IV, Sysoev AA (2022) Effect of acute hypoxia on the brain energy metabolism of the scorpionfish Scorpaena porcus Linnaeus, 1758: the pattern of oxidoreductases activity and adenylate system. Fish Physiol Biochem 48:1105–1115. https://doi.org/10.1007/s10695-022-01103-2

Childress JJ, Somero GN (1979) Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Marine Biol 52:273–283.

Nilsson GE, Östlund‐Nilsson S (2008) Does size matter for hypoxia tolerance in fish? Biol Rev Camb Philos Soc 83:173–189. https://doi.org/ 10.1111/j.1469-185X.2008.00038.x

Мильман ЛС, Юровецкий ЮГ, Ермолаева ЛП (1974) Определение активности важнейших ферментов углеводного обмена. В кн.: Методы биологии развития. М. Наука. 346–364. [Mil'man LS, Yurovetskiy YG, Ermolaeva LP (1974) In: The methods of developmental biology. Determination of the activity of the essential enzymes of carbohydrate metabolism. M. Nauka. 346–364. (In Russ)].

Kotrschal K, Van Staaden MJ, Huber R (1998) Fish brains: evolution and anvironmental relationships. Rev Fish Biol Fish 8:373–408. https://doi.org/ 10.1023/A:1008839605380

Northcutt RG (2002) Understanding vertebrate brain evolution. Integr Comp Biol 42:743–756. https://doi.org/ 10.1093/icb/42.4.743

Swanson LW (2000) What is the brain? Trends Neurosci 23:519–527. https://doi.org/10.1016/s0166-2236(00)01639-8

Ito H, Ishikawa Y, Yoshimoto M, Yamamoto N (2007) Diversity of brain morphology in teleosts: brain and ecological niche. Brain, Behavior and Evolution 69:76–86. https://doi.org/10.1159/000095196

Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 4-5:319–337. https://doi.org/10.1159/000113282

Kage T, Takeda H, Yasuda T, Maruyama K, Yamamoto N, Yoshimoto M, Araki K, Inohaya K, Okamoto H, Yasumasu S, Watanabe K, Ito H, Ishikawa Y (2004) Morphogenesis and regionalization of the medaka embryonic brain. J Comp Neurol 476:219–239. https://doi.org/10.1002/cne.20219

Almeida-Val VMF, Val AL, Duncan WP, Souza FC, Paula-Silva MN, Land S (2000) Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels. Comp Biochem Physiol B Biochem Physiol 125:219–226. https://doi.org/10.1016/s0305-0491(99)00172-8

Taylor EW, Leite CAC, McKenzie DJ, Wang T (2010) Control of respiration in fish, amphibians and reptiles. Braz J Med Bio Res 43:409–424. https://doi.org/10.1590/S0100-879X2010007500025

Milsom WK (2010) The phylogeny of central chemoreception. Resp Physiol Neurobiol 173:195–200. https://doi.org/10.1016/j.resp.2010.05.022

Milsom WK, Taylor ETW (2015) Control of breathing in elasmobranchs. Fish Physiology 34:83–126. https://doi.org/10.1016/B978-0-12-801286-4.00002-2

Shulman GE, Love RM (1999) Advances in Marine Biology: The biochemical ecology of marine fishes. Acad Press.

Houlihan DF, Mathers EM, Foster A (1993) Biochemical correlates of growth rate in fish. In Fish ecophysiology. Rankin JC, Jensen FB (Eds). Chapman & Hall: Falmouth, Cornwall. 45–71.

Almeida-Val VMF, Farias IP, Silva MN, Duncan WP, Val AL (1995) Biochemical adjustments to hypoxia by Amazon cichlids. Braz J Med Biol Res 28:1257–1263.

Schultz IR, Barron MG, Newman MC, Vick AM (1999) Blood flow distribution and tissue allometry in channel catfish. J Fish Biol 54:1275–1286. https://doi.org/10.1111/j.1095-8649.1999.tb02054.x

Soldatov AA (2006) Organ blood flow and vessels of microcirculatory bed in fish. J Evol Biochem Physiol 42:243–252. https://doi.org/10.1134/S002209300603001X

Kieffer JD, Tufts BL (1998) Effects of food deprivation on white muscle energy reserves in rainbow trout (Oncorhynchus mykiss): the relationships with body size and temperature. Fish Physiol Biochem 19:239–245. https://doi.org/10.1023/A:1007759407275

Foster GD, Youson JH, Moon TW (1993) Carbohydrate metabolism in the brain of the adult lamprey. J Exp Zool 267:27–32. https://doi.org/10.1002/jez.1402670105

Vornanen M, Paajanen V (2006) Seasonal changes in glycogen content and Na+-K+-ATPase activity in the brain of crucian carp. Am J Physiol 291:R1482–R1489. https://doi.org/10.1152/ajpregu.00172.2006

Tota B, Cimini V, Salvatore G, Zummo G (1983) Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranchs and teleost fishes. Am J Anat 167:15–32. https://doi.org/10.1002/aja.1001670103

Olson E (2006) Gene Regulatory Networks in the Evolution and Development of the Heart. Science 313:1922–1927. https://doi.org/10.1126/science.1132292

Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Gen 3:544–556. https://doi.org/10.1038/nrg843

Simões-Costa MS, Vasconcelos M, Sampaio AC, Cravo RM, Linhares VL, Hochgreb T, Yan CYI, Davidson B, Xavier-Neto J (2005) The evolutionary origin of cardiac chambers. Dev Biol 277:1–15. https://doi.org/10.1016/j.ydbio.2004.09.026

Kibler NA, Nuzhny VP, Kharin SN, Shmakov DN (2020) Does Atrial Electrical Stimulation to the Sequence of Depolarization of the Ventricles of Rainbow Trout Oncorhynchus mykiss. J Evol Biochem Physiol 56:60–65. https://doi.org/10.1134/S0022093020010056

Farrell AP, Jones DR, Hoar WS, Randall DJ (1992) The heart. In Fish Physiology. Hoar WS, Randall DJ, Farrell AP (Eds). Acad Press Inc San Diego USA 1–88.

Tessadori F, van Weerd JH, Burkhard SB, Verkerk AO, de Pater E, Boukens BJ, Vink A, Christoffels VM, Bakkers J (2012) Identification and functional characterization of cardiac pacemaker cells in zebrafish. PLoS One 7:e47644. https://doi.org/10.1371/journal.pone.0047644

Stoyek MR, Croll RP, Smith FM (2015) Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). J Comp Neurol 523:1683–1700. https://doi.org/10.1002/cne.23764

Short CE, Driedzic, WR (2018) Species-specific low plasma glucose in fish is associated with relatively high tissue glucose content and is inversely correlated with cardiac glycogen content. J Comp Physiol 188:809–819. https://doi.org/ 10.1007/s00360-018-1172-3

Vornanen M (1994) Seasonal adaptation of crucian carp (Carassius carassius L.) heart: glycogen stores and lactate dehydrogenase activity. Can J Zool 72:433–442. https://doi.org/10.1139/z94-061

Lutz PL, Nilsson GE (1997) Contrasting strategies for anoxic brain survival--glycolysis up or down. J Exp Biol 200:411–419. https://doi.org/ 10.1242/jeb.200.2.411

Richards JG (2009) Metabolic and molecular responses of fish to hypoxia. Fish Physiol 27:443–485. https://doi.org/10.1016/S1546-5098(08)00010-1

Kumar A, Gopesh A (2015) Effect of hypoxia and energy conservation strategies in the air-breathing Indian catfish, Clarias batrachus. Natl Acad Sci Lett 38:135–137. https://doi.org/10.1007/s40009-014-0332-6

Taylor EW (1992) Nervous control of the heart and cardiorespiratory interactions. Fish Physiol 12:343–387. https://doi.org/10.1016/S1546-5098(08)60013-8

Taylor EW, Leite CAC, Florindo LH, Belao T, Rantin FT (2009) The basis of vagal efferent control of heart rate in a neotropical fish, the pacu, Piaractus mesopotamicus. J Exp Biol 212:906–913. https://doi.org/ 10.1242/jeb.020529

Vornanen M, Tuomennoro J (1999) Effects of acute anoxia on heart function in crucian carp: importance of cholinergic and purinergic control. Am J Physiol 277:R465–R475. https://doi.org/10.1152/ajpregu.1999.277.2.R465

Sollid J, Nilsson GE (2006) Plasticity of respiratory structures—adaptive remodeling of fish gills induced by ambient oxygen and temperature. Resp Physiol Neurobiol 154:241–251. https://doi.org/10.1016/j.resp.2006.02.006

Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241. https://doi.org/ 10.1126/science.2417316

Sick TJ, Perez-Pinon M, Lutz PL, Rosenthal M (1993) Maintaining coupled metabolism and membrane function in anoxic brain: A comparison between the turtle and rat. In Surviving hypoxia. Hochachka PW, Lutz PL, Sick T, Rosenthal M, van den Thillart D (Eds). CRC Press: Boca Raton, Florida. 351–363.

Buck LT, Pamenter ME (2018) The hypoxia-tolerant vertebrate brain: arresting synaptic activity. Comp Biochem Physiol B Biochem Mol Biol 224:61–70. https://doi.org/10.1016/j.cbpb.2017.11.015

Paajanen V, Vornanen, M (2003) Effects of chronic hypoxia on inward rectifier K+ current (I K1) in ventricular myocytes of crucian carp (Carassius carassius) heart. J Membr Biol 194:119–127. https://doi.org/ 10.1007/s00232-003-2032-x

Liu H, Aldrich RW (2011) Tissue-specific N terminus of the HCN4 channel affects channel activation. J Biol Chem 286:14209–14214. https://doi.org/10.1074/jbc.m110.215640

Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480. https://doi.org/ 10.1146/annurev.physiol.65.092101.142734

Bouvier J, Autran S, Dehorter N, Katz DM, Champagnat J, Fortin G, Thoby-Brisson M (2008) Brain-derived neurotrophic factor enhances fetal respiratory rhythm frequency in the mouse preBötzinger complex in vitro. Eur J Neurosci 28:510–520. https://doi.org/10.1111/j.1460-9568.2008.06345.x

Herrmann S, Stieber J, Stockl G, Hofmann F, Ludwig A (2007) HCN4 provides a “depolarization reserve” and is not required for heart rate acceleration in mice. EMBO J 26:4423–4432. https://doi.org/ 10.1038/sj.emboj.7601868

Di Francesco D (2006) Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol Res 53:399–406. https://doi.org/10.1016/j.phrs.2006.03.006

Monfredi O, Maltsev VA, Lakatta EG (2013) Modern concepts concerning the origin of the heartbeat. Physiol 28:74–92. https://doi.org/ 10.1152/physiol.00054.2012

Laurent P, Holmgren S, Nilsson S (1983) Nervous and humoral control of the fish heart: structure and function. Comp Biochem Physiol A Physiol 76:525–542. https://doi.org/10.1016/0300-9629(83)90455-3

López-Barneo J, Nurse CA, Nilsson GE, Buck LT, Gassmann M, Bogdanova AY (2010) First aid kit for hypoxic survival: sensors and strategies. Physiol Biochem Zool 83:753–763. https://doi.org/10.1086/651584

Cai W, Liu SS, Li BM, Zhang XH (2022) Presynaptic HCN channels constrain GABAergic synaptic transmission in pyramidal cells of the medial prefrontal cortex. Biol Open 11: bio058840. https://doi.org/10.1242/bio.058840

Adams S, Zubov T, Bueschke N, Santin JM (2021) Neuromodulation or energy failure? Metabolic limitations silence network output in the hypoxic amphibian brainstem. Am J Physiol Regul Integr Comp Physiol 320:R105–R116. https://doi.org/10.1152/ajpregu.00209.2020

Park K, Yi JH, Kim H, Choi K, Kang SJ, Shin KS (2011) HCN channel activity-dependent modulation of inhibitory synaptic transmission in the rat basolateral amygdala. Biochem Biophys Res Commun 404:952–957. https://doi.org/10.1016/j.bbrc.2010.12.087.

Heath AG (1988) Anaerobic and aerobic energy metabolism in brain and liver tissue from rainbow trout (Salmo gairdneri) and bullhead catfish (Ictalurus nebulosus). J Exp Zool 248:140–146. https://doi.org/10.1002/jez.1402480203

Chippari-Gomes AR, Gomes LDC, Lopes NP, Val AL, Almeida-Val VMF (2005) Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comp Biochem Physiol B Biochem Physiol 141:347–355. https://doi.org/ 10.1016/j.cbpc.2005.04.006

Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford Univer Press Oxford Great Britain.