МОРФОФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ДВУХ ТИПОВ ФАГОЦИТОВ ГОЛОТУРИИ ЕUPENTACTA FRAUDATRIX (DJAKONOV ET BARANOVA, 1958)
PDF

Ключевые слова

фагоциты
восстановленный глутатион
активные формы кислорода
лектины
дексаметазон
голотурии

Аннотация

Фагоциты дальневосточной голотурии Eupentacta fraudatrix методом градиентного центрифугирования разделяются на две фракции (Ф1 и Ф2 фагоциты), имеющие различные функциональные маркеры. Целью работы явилось выявление морфологических особенностей клеток двух фракций, их базового оксидантно-антиоксидантного статуса и фенотипа. Различными методами, включая световую и флуоресцентную микроскопию, цитометрический анализ и визуализирующую цитометрию, выявлены морфологические различия между двумя типами фагоцитов голотурии E. fraudatrix. Фагоциты различаются по своим размерным характеристикам, гранулярности, ядерно-цитоплазменному соотношению, показателям, характеризующим округлость клеток. Полученные данные свидетельствуют в пользу представлений о разном уровне дифференциации Ф1 и Ф2 фагоцитов и являются морфологическим обоснованием ранее полученных данных о разной роли этих клеток в иммунном ответе. В пользу представлений о разной функциональной роли двух типов фагоцитов свидетельствует и различный характер изменения числа этих клеток в зависимости от сезона. Наибольшие изменения числа Ф1 фагоцитов отмечены в период температурно-зависимых изменений метаболической активности голотурии, а Ф2 фагоцитов – в периоды, соответствующие тканевым перестройкам. Исследование базовых параметров функциональной активности не выявило достоверных различий в уровнях активных форм кислорода в обоих типах фагоцитов, при этом имелась тенденция к превышению уровня восстановленного глутатиона в Ф1 фагоцитах по сравнению с таковым в Ф2 клетках, что свидетельствует в пользу представлений о более высокой антиоксидантной активности в Ф1 фагоцитах. Дексаметазон оказывал на уровень связывания растительных лектинов из Canavalia ensiformis и Glycin max поверхностными рецепторами разнонаправленное действие в двух типах фагоцитов, подтверждая предположение о разном уровне их дифференцированности/активности и различной функциональной роли этих клеток.

PDF

Литература

Granda V, Lovatelli A, Rome M (eds) (2008) Sea cucumbers. A global review of fisheries and trade. FAO fisheries and aquaculture technical paper No. 516. Rome: FAO. http://www.fao.org/docrep/011/i0375e/i0375e00.htm

Dong Y, Sun H, Zhou Z, Yang A, Chen Z, Guan X, Gao S, Wang B, Jiang J (2014) Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge. Int J Mol Sci 15:19472–19486. https://doi.org/10.3390/ijms151119472

He L-S, Zhang P-W, Huang J-M, Zhu F-C, Danchin A, Wang Y (2018) The enigmatic genome of an obligate ancient Spiroplasma symbiont in a Hadal holothurian. Appl Environ Microbiol 84:e01965-17. https://doi.org/10.1128/AEM.01965-17

Li Q, Qi R, Wang Y, Ye S, Qiao G, Li H (2013) Comparison of cells free in coelomic and water-vascular system of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol 35:1654–1657. https://doi.org/10.1016/j.fsi.2013.07.020

Chia F-S, Xing J (1996) Echinoderm coelomocytes. Zool Stud 35:231–254.

Eliseikina MG, Magarlamov TY (2002) Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota, Stichopodidae) and Cucumaria japonica (Dendrochirota, Cucumariidae). Russ J Mar Biol 28:197–202. https://doi.org/10.1023/A:1016801521216

Dolmatova LS, Eliseikina MG, Romashina VV (2004) Antioxidant enzymatic activity of coelomocytes of the Far East sea cucumber Eupentacta fraudatrix. J Evol Biochem Physiol 40:126–135.

Ramírez-Gómez F, Aponte-Rivera F, Méndez-Castaner L, García-Arrarás JE (2010) Changes in holothurian coelomocyte populations following immune stimulation with different molecular patterns. Fish Shellfish Immunol 29:175–185. https://doi.org/10.1016/j.fsi.2010.03.013

Edds KT (1977) Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Biol 73:479–491. https://doi.org/10.1083/jcb.73.2.479

Liao W-Y, Fugmann SD (2017) Lectins identify distinct populations of coelomocytes in Strongylocentrotus purpuratus. PLoS ONE 12:e0187987. https://doi.org/10.1371/journal.pone.0187987

Dolmatova LS, Dolmatov IY (2020) Different macrophage type triggering as target of the action of biologically active substances from marine invertebrates. Mar. Drugs 18:37. https://doi.org/10.3390/md18010037

Dolmatova LS., Ulanova OA, Timchenko NF (2019) Yersinia pseudotuberculosis thermostable toxin dysregulates the functional activity of two types of phagocytes in the holothurian Eupentacta fraudatrix. Biol Bull Russ Acad Sci 46:117–127. https://doi.org/10.1134/S1062359019020043

Prompoon Y, Weerachatyanukul W, Withyachumnarnkul B, Vanichviriyakit R, Wongprasert K, Asuvapongpatana S (2015) Lectin-based profiling of coelomocytes in Holothuria scabra and expression of superoxide dismutase in purified coelomocytes. Zoolog Sci 32:345–351. https://doi.org/10.2108/zs140285

Dolmatova LS, Ulanova OA, Timchenko NF (2021) Effect of a heat-stable toxin of Yersinia pseudotuberculosis on the functional and phenotypic traits of two types of phagocytes in the holothurian Eupentacta fraudatrix. Biol Bull Russ Acad Sci 48(4):395–406. https://doi.org/10.1134/S1062359021040051

Dolmatova LS, Zaika OA (2007) Apoptosis-modulating effect of prostaglandin E2 in coelomocytes of holothurian Eupentacta fraudatrix depends on the cell antioxidant enzyme status. Biol Bull Russ Acad Sci 34:221–229. https://doi.org/10.1134/S1062359007030028

Одинцова НА (2001) Основы культивирования морских беспозвоночных. Владивосток: Дальнаука. [Odintsova NA (2001) Bases of cultivation of marine invertebrate cells. Vladivostok: Dalnauka. (In Russ)].

Dolmatova LS, Eliseykina MG, Timchenko NF, Kovaleva AL, Shitkova OA (2003) Generation of reactive oxygen species in the different fractions of the coelomocytes of holothurian Eupentacta fraudatrix in response to the thermostable toxin of Yersinia pseudotuberculosis in vitro. Chinese J Oceanol Limnol 21:293–304. https://doi.org/ 10.1007/BF02860423

Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72. https://doi.org/10.1007/978-1-60761-411-1_4

Fraternale A, Crinelli R, Casabianca A, Paoletti M, Orlandi Ch, Carloni E, Smietana M, Palamara A (2013) Molecules altering the intracellular thiol content modulate NF-kB and STAT-1/IRF-1 signalling pathways and IL-12 p40 and IL-27 p28 production in murine macrophages. PLoS ONE 8(3):e57866. https://doi.org/10.1371/journal.pone.0057866

McKenzie ANJ, Preston TM (1992) Functional studies on Calliphora vomitoria haemocyte subpopulations defined by lectin staining and density centrifugation. Devel Compar Immunol 16:19–30. https://doi.org/10.1016/0145-305x(92)90048-h

Гнедкова ИА, Лисяный НИ, Станецкая ДН, Розуменко ВД, Главацкий АЯ, Шмелева АА, Малышева ТА, Черненко ОГ, Гнедкова МА (2015) Лектинсвязывающие и туморогенные свойства клеток глиомы С6. Онкология 17: 4–11. [Gnedkova IA, Lisyanyi NI, Stanetskaya DN, Rozumenko VD, Glavatskii AYa, Shmeleva AA, Malysheva TA, Chernenko OG, Gnedkova MA (2015) Lectinbinding and tumorigenic properties of C6 glioma cells. Onkologiya 17:4–11. (In Russ)].

Andrade C, Oliveira B, Guatelli S, Martinez P, Simões B, Bispo C, Ferrario C, Bonasoro F, Rino J, Sugni M, Gardner R, Zilhão R, Coelho AV (2021) Characterization of coelomic fluid cell types in the star fish Marthasterias glacialis using a flow cytometry/imaging combined approach. Front Immunol 12:641–664. https://doi.org/10.3389/fimmu

Xing K, Yang HS, Chen MY (2008) Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicus. Aquat Biol 2:85–92. https://doi.org/10.3354/ab00038

Endean R (1966) The coelomocytes and coelomic fluids. In: Physiology of Echinodermata. New York: Intersciences.301–328.

Henson JH, Nesbitt D, Wright BD, Scholey JM (1992) Immunolocalization of kinesin in sea urchin coelomocytes. Association of kinesin with intracellular organelles. J Cell Sci 103:309–320. https://doi.org/10.1242/jcs.103.2.309

Zavalnaya EG, Shamshurina EV, Eliseikina MG (2020) The immunocytochemical identification of PIWI-positive cells during the recovery of a coelomocyte population after evisceration in the holothurian Eupentacta fraudatrix (Djakonov et Baranova, 1958) (Holothuroidea: Dendrochirota). Russ J Mar Biol 46:97–104. https://doi.org/10.31857/S0134347520020114

Canicattì C, D'Ancona G, Farina‐Lipari E (1989) The coelomocytes of Holothuria polii (Echinodermata). I. Light and electron microscopy. Italian J Zool 56:29–36. https://doi.org/10.1080/11250008909355618

DaMatta RA, Araujo-Jorge T, de Souza W (1995) Subpopulations of mouse resident peritoneal macrophages fractionated on percoll gradients show differences in cell size, lectin binding and antigen expression suggestive of different stages of maturation. Tissue and Cell 27:505–513. https://doi.org/10.1016/S0040-8166(05)80059-X

Sediq AS, Klem R, Nejadnik MR, Meij P, Jiskoo W (2018) Label-free, flow-imaging methods for determination of cell concentration and viability. Pharm. Res 35:150. https://doi.org/10.1007/s11095-018-2422-5

Luu TU, Gott SC,. Woo BWK, Rao MP, Liu WF (2015) Micro and nano-patterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl Mater Interfaces 7(51):28665–28672. https://doi.org/10.1021/acsami.5b10589

Oweson C, Li C, Söderhäll I, Hernroth B (2010) Effects of manganese and hypoxia on coelomocyte renewal in the echinoderm Asterias rubens (L.). Aquat Toxicol 100:84–90. https://doi.org/10.1016/j.aquatox.2010.07.012

Dolmatova LS, Dolmatov IYu (2018) Lead induces different responses of two subpopulations of phagocytes in the holothurian Eupentacta fraudatrix. J Ocean Univ China 17:1391–1403. https://doi.org/10.1007/s11802-018-3795-0

Li C, Fang H, Xu D (2019) Effect of seasonal high temperature on the immune response in Apostichopus japonicus by transcriptome analysis. Fish Shellfish Immunol 92:765–771. https://doi.org/10.1016/j.fsi.2019.07.012

Brockton V, Henson JH, Raftos DA, Majeske AJ, Kim Y-O, Smith LC (2008) Localization and diversity of 185/333 proteins from the purple sea urchin—unexpected protein-size range and protein expression in a new coelomocyte type. J Cell Sci 121:339–348. https://doi.org/10.1242/jcs.012096

Долматова ЛС, Слинько ЕН, Колосова ЛФ (2018) Особенности накопления тяжелых металлов в тканях двух цветных форм голотурии Eupentacta frudatrix в летне-осенний период. Вестник ДВО РАН 1:71–78. [Dolmatova LS, Slinko EN, Kolosova LF (2018) Accumulation of heavy metals in tissues of two color forms of the sea cucumber Eupentacta frudatrix in summer-autumn. Vestn. Dal’nevost. Otd. Ross. Akad. Nauk 1:71–78. (In Russ)].

Marčeta T, Matozzo V, Alban S, Badocco D, Pastore P, Marin MG (2020) Do males and females respond differently to ocean acidification? An experimental study with the sea urchin Paracentrotus lividus. Environ Sci Pollut Res Int 27:39516–39530. https://doi.org/10.1007/s11356-020-10040-7

Баранова ЗИ (1971) Иглокожие залива Посьета Японского моря. Исследования фауны морей 8(16):242–264. [Baranova ZI (1971) Echinoderms in Posyet Bay, Sea of Japan. Studies on the marine fauna 8(16):242–264. (In Russ)].

Zhang L, Pan Y, Song H (2015) Chapter 9. Environmental drivers of behavior. In: The sea cucumber Apostichopus japonicus. History, biology and aquaculture. Amsterdam: Academic Press 133–152. http://dx.doi.org/10.1016/B978-0-12-799953-1.00009-X

Лазарюк АЮ, Кильматов ТР, Марьина ЕН, Кустова ЕВ. (2021) Особенности сезонной изменчивости гидрологического режима бухты Новик (остров Русский, залив Петра Великого, Японское море). Морской гидрофизический журнал 37 (6): 680–695. [Lazaryuk AYu, Kilmatov TR, Marina EN, Kustova EV (2021) Seasonal features of the Novik Bay hydrological regime (Russky Island, Peter the Great Bay, Sea of Japan). Morskoy Gidrofizicheskiy Zhurnal 37: 680-695. (In Russ)]. https://doi.org/10.22449/0233-7584-2021-6-680-695

Левин ВС (1982) Дальневосточный трепанг. Владивосток: Дальневост. кн. изд-во. 1982. [Levin VS (1982) Far-Eastern trepang. Vladivostok: Far-East Publishers. (In Russ)].

Menzel LP, Bigger CH (2015) Identification of unstimulated constitutive immunocytes, by enzyme histochemistry, in the coenenchyme of the octocoral Swiftia exserta. Biol Bull 229(2):199–208. https://doi.org/10.1086/BBLv229n2p199

Thiel M, Zourelidis C, Peter K (1996) Die Rolle der polymorphkernigen neutrophilen Leukozyten in der Pathogenese des akuten Lungenversagens (ARDS). Anaesthesist 45:113–130.

Morris D, Guerra C, Khurasany M, Guilford F, Saviola B, Huang Y, Venketaraman V (2013) Glutathione supplementation improves macrophage functions in HIV. J Interfer Cytokine Res 33:270–279. https://doi.org/10.1089/jir.2012.0103

Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C (1998) Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci USA 95:3071–3076. https://doi.org/10.1073/pnas.95.6.3071

Koren-Gluzer M, Rosenblat M, Hayek T (2015) Paraoxonase 2 induces a phenotypic switch in macrophage polarization favoring an M2 anti-inflammatory state. Int J Endocrinol 2015:915243. https://doi.org/10.1155/2015/915243

Mendoza-Coronel E, Ortega E (2017) Macrophage polarization modulates FcγR- and CD13-mediated phagocytosis and reactive oxygen species production, independently of receptor membrane. Front Immunol 8:303. https://doi.org/10.3389/fimmu.2017.00303. eCollection 2017

Tan H-Y, Wang N, Li S, Hong M, Wang X, Feng Y (2016) The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev 2016:2795090. http://dx.doi.org/10.1155/2016/279509

Lewis CV, Vinh A, Diep H, Samuel CS, Drummond GR, Kemp-Harper BK (2019) Distinct redox signalling following macrophage activation influences profibrotic activity. J Immunol Res 2019: 1278301. https://doi.org/10.1155/2019/1278301

Новиков ВЕ, Левченкова ОС, Пожилова ЕВ (2014) Роль активных форм кислорода в физиологии и патологии клетки и их фармакологическая регуляция. Обзоры по клинической фармакологии и лекарственной терапии 4: 13–21. [Novikov VE, Levchenkova OS, Pozhilova EV (2014) Role of reactive oxygen species in cell pathology and physiology and their pharmacological regulation. Reviews on Clinical Pharmacology and Drug Therapy 4:13–21. (In Russ)]. https://doi.org/10.17816/RCF12413-21

Muri J, Kopf M (2021) Redox regulation of immunometabolism. Nat Rev Immunol 21:363–381. https://doi.org/10.1038/s41577-020-00478-8

Fortuny L, Sebastián C (2021) Sirtuins as metabolic regulators of immune cells phenotype and function. Genes 12:1698. https://doi.org/10.3390/genes12111698

Beri MM, Debray H, Dhainaut A, Porchet-Hennere E (1988) Distribution and nature of membrane receptors for different plant lectins in the coelomocyte subpopulations of the Annelida Nereis diversicolor. Dev Comp Immunol 12:1–15. https://doi.org/10.1016/0145-305x(88)90020-1

Seco-Rovira V, Beltran-Frutos E, Ferrer C, Sanchez-Huertas MM, Madrid J.F., Saez FJ, Pastor LM (2013) Lectin histochemistry as a tool to identify apoptotic cells in the seminiferous epithelium of Syrian hamster (Mesocricetus auratus) subjected to short photoperiod. Reprod Domest Anim 48:974–983. https://doi.org/10.1111/rda.12196

Krugluger W, Gessl A, Boltz-Nitulescu G, Förster O (1990) Lectin binding of rat bone marrow cells during colony-stimulating factor type 1-induced differentiation: soybean agglutinin as a marker of mature rat macrophages. J Leukoc Biol 48:541–548. https://doi.org/10.1002/jlb.48.6.541

Gengozian N, Reyes L, Pu R, Homer BL, Bova F J, Yamamoto JK (1997) Fractionation of feline bone marrow with the soybean agglutinin lectin yields populations enriched for erythroid and myeloid elements: transplantation of soybean agglutinin-negative cells into lethally irradiated recipients. Transplantation 64:510–518. https://doi.org/10.1097/00007890-199708150-00022

Pilling D, Fan T, Huang D, Kaul B, Gomer RH (2009) Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4(10):e7475. https://doi.org/10.1371/journal.pone.0007475

Keppler OT, Peter ME, Hinderlich S, Moldenhauer G, Stehling P, Schmitz I, Schwartz-Albiez R, Reutter W, Pawlita M (1999) Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus. Glycobiology 9:557–569. https://doi.org/10.1093/glycob/9.6.557

Ehrchen JM, Roth J, Barczyk-Kahlert K (2019) More than suppression: glucocorticoid action on monocytes and macrophages. Front Immunol 10:2028. https://doi.org/10.3389/fimmu.2019.02028.

Dolmatov IYu, Dolmatova LS, Shitkova OA, Kovaleva AL (2004) Dexamethasone-induced apoptosis in phagocytes of holothurian Eupentacta fraudatrix. In: Echinoderms. Leiden: A.A. Balkema Publishers. 105–119.