СЕЗОННАЯ ДИНАМИКА МЕЛАТОНИНА, ПРОЛАКТИНА, ПОЛОВЫХ ГОРМОНОВ И ГОРМОНОВ НАДПОЧЕЧНИКОВ У ЗДОРОВЫХ ЛЮДЕЙ: МЕТА-АНАЛИЗ
PDF

Ключевые слова

мелатонин
пролактин
кортизол
катехоламины
альдостерон
тестостерон
эстрадиол
сезон

Аннотация

Сегодня большинство исследователей считает, что цирканнуальные колебания в функционировании организма человека связаны не столько с колебаниями уровня мелатонина, сколько с изменениями температуры воздуха. Цель данной работы – с помощью мета-анализа публикаций исследовать сезонную динамику мелатонина, пролактина, половых гормонов и гормонов надпочечников у здоровых людей; на основании результатов мета-анализа сделать вывод о влиянии фотопериода и температуры воздуха на сезонные изменения в функционировании организма современного человека. Нами с помощью программы Review Manager 5.3 был проведен мета-анализ 31 панельного и 12 кросс-секциональных исследований, посвященных сезонной динамики циркулирующих гормонов. В результате проведенного мета-анализа было выявлено увеличение уровня циркулирующего норадреналина и альдостерона зимой по сравнению с летом, что наряду с установленным ранее увеличением активности тиреоидных гормонов зимой, подтверждает существенное влияние цирканнуальных колебаний температуры воздуха на гормональный статус современного человека. Однако поскольку в ряде исследований была показана сезонная динамика мелатонина, а мета-анализ выявил значимое увеличение весной по сравнению с осенью среднего за сутки уровня пролактина у женщин репродуктивного возраста, нельзя полностью исключить влияние фотопериода на современного человека. Гормональные изменения, в свою очередь, могут вызвать сезонные изменения физиологических параметров и репродуктивной функций, а также повлиять на развитие и обострение отдельных патологий.

https://doi.org/10.31857/S0044452921030062
PDF

Литература

Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon AS, Lincoln GA, Hazlerigg DG (2010) A molecular switch for photoperiod responsiveness in mammals. Curr Biol 20 (24): 2193–2198. https://doi.org/10.1016/j.cub.2010.10.048

Dardente H, Hazlerigg DG, Ebling FJ (2014) Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne) 5:19. https://www.frontiersin.org/articles/10.3389/fendo.2014.00019/full

Kuzmenko NV, Tsyrlin VA, Pliss MG, Galagudza M (2021) Seasonal variations in levels of human thyroid-stimulating hormone and thyroid hormones: a meta-analysis. Chronobiology International. https://doi.org/10.1080/07420528.2020.1865394

Tenorio F, Simões Mde J, Teixeira VW, Teixeira ÁA (2015) Effects of melatonin and prolactin in reproduction: review of literature. Rev Assoc Med Bras 61(3):269–274. https://doi.org/10.1590/1806-9282.61.03.269

Tortonese DJ (2016) Intrapituitary mechanisms underlying the control of fertility: key players in seasonal breeding. Domest Anim Endocrinol 56 (Suppl):S191–203. https://doi.org/10.1016/j.domaniend.2016.01.002

Yu K, Deng SL, Sun TC, Li YY, Liu YX (2018) Melatonin Regulates the Synthesis of Steroid Hormones on Male Reproduction: A Rev Molecules 23(2):447. https://doi.org/10.3390/molecules23020447

Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128(1):1–24. https://doi.org/10.1016/s0016-6480(02)00064-3

Scotti MA, Rendon NM, Greives TJ, Romeo RD, Demas GE (2015) Short-day aggression is independent of changes in cortisol or glucocorticoid receptors in male Siberian hamsters (Phodopus sungorus). J Exp Zool A Ecol Genet Physiol 323(5):331–341. https://doi.org/10.1002/jez.1922

Lemos DR, Downs JL, Raitiere MN, Urbanski HF (2009) Photoperiodic modulation of adrenal gland function in the rhesus macaque: effect on 24-h plasma cortisol and dehydroepiandrosterone sulfate rhythms and adrenal gland gene expression. J Endocrinol 201(2):275–285. https://doi.org/10.1677/JOE-08-0437

de Bruijn R, Romero LM (2018) The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 269:11–32. https://doi.org/10.1016/j.ygcen.2018.07.007

Маслов ЛН, Нарыжная НВ (2015) Влияние долговременной адаптации к холоду на состояние сердечно-сосудистой системы. Рос Физиол Журн им ИМ Сеченова 101(5): 525-537. [Maslov LN, Naryzhnaia NV (2015) Impact of long-term adaptation to cold on the state of cardiovascular system. Russian Journal of Physiology 101(5): 525–537. (In Russ)].

Sun Z (2010) Cardiovascular responses to cold exposure. Front Biosci (Elite Ed) 2:495–503. https://doi.org/doi: 10.2741/e108

Rodriguez H, Filippa VP, Penissi A, Fogal T, Domínguez S, Piezzi RS, Scardapane L (2013) Seasonal changes in the activity of the adrenal medulla of Viscacha (Lagostomus maximus maximus). Anat Rec (Hoboken) 296(7):1089–1095. https://doi.org/10.1002/ar.22707

Eisermann K, Meier B, Khaschei M, von Holst D (1993) Ethophysiological responses to overwinter food shortage in wild European rabbits. Physiol Behav 54(5): 973–980. https://doi.org/10.1016/0031-9384(93)90311-3

Baldock NM, Sibly RM, Penning PD (1988) Behavior and seasonal variation in heart rate in domestic sheep, Ovis aries. Animal Behaviour 36(1):35–43. https://doi.org/10.1016/S0003-3472(88)80247-1

Staples JF (2016) Metabolic Flexibility: Hibernation, Torpor, and Estivation. Comprehensive Physiology 6(2): 737–771. https://doi.org/10.1002/cphy.c140064

Weil ZM, Borniger JC, Cisse YM, Abi Salloum BA, Nelson RJ (2015) Neuroendocrine control of photoperiodic changes in immune function. Front Neuroendocrinol 37:108–118. https://doi.org/10.1016/j.yfrne.2014.10.001

Rosenthal T (2004) Seasonal variations in blood pressure. Am J Geriatr Cardiol 13(5):267–272. https://doi.org/10.1111/j.1076-7460.2004.00060.x

Visscher TL, Seidell JC (2004) Time trends (1993-1997) and seasonal variation in body mass index and waist circumference in the Netherlands. Int J Obes Relat Metab Disord 28(10):1309–1316. https://doi.org/10.1038/sj.ijo.0802761

Portaluppi F, Smolensky MH, Touitou Y (2010) Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int 27(9-10):1911–1929. https://doi.org/10.3109/07420528.2010.516381

Кузьменко НВ (2019) Сезонные колебания атмосферного давления, парциальной плотности кислорода и геомагнитной активности как дополнительные синхронизаторы цирканнуальных ритмов. Биофизика 64(4): 754-766. [Kuzmenko NV (2019) Seasonal variations in atmospheric pressure, partial oxygen density and geomagnetic activity as additional synchronizers of circannual rhythms. Biophysics 64(4):599–609. (In Russ)]. https://doi.org/10.1134/S0006350919040080

Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to Meta-analysis. Wiley: Chichester.

Агаджанян НА, Радыш ИВ, Хисамутдинов АФ (2009) Липидный и гормональный обмен у здоровых мужчин в различные сезоны года. Казанский медицинский журнал 90 (6): 776–779. [Aghajanian NA, Radysh IV, Khisamutdinov AF (2009) Lipid and hormone metabolism in healthy men in different year seasons. Kazan medical journal 90 (6): 776–779. (In Russ)]. https://cyberleninka.ru/article/n/lipidnyy-i-gormonalnyy-obmen-u-zdorovyh-muzhchin-v-razlichnye-sezony-goda

Anthanont P, Levine JA, McCrady-Spitzer SK, Jensen MD (2017) Lack of Seasonal Differences in Basal Metabolic Rate in Humans: A Cross-Sectional Study. Horm Metab Res 49 (1):30–35. https://doi.org/10.1055/s-0042-107793

Arendt J, Wirz-Justice A, Bradtke J, Kornemark M (1979) Long-term studies on immunoreactive human melatonin. Ann Clin Biochem 16(6):307–312. https://doi.org/10.1177/000456327901600182

Dabbs JM (1990) Age and seasonal variation in serum testosterone concentration among men. Chronobiol Int 7 (3): 245–249. https://doi.org/10.3109/07420529009056982

Del Ponte A, Guagnano MT, Sensi S (1984) Time-related behaviour of endocrine secretion: circannual variations of FT3, cortisol, HGH and serum basal insulin in healthy subjects. Chronobiol Int 1(4):297–300. https://doi.org/10.3109/07420528409063910

Depue RA, Arbisi P, Spoont MR, Krauss S, Leon A, Ainsworth B (1989) Seasonal and mood independence of low basal prolactin secretion in premenopausal women with seasonal affective disorder. Am J Psychiatry 146(8):989–995. https://doi.org/10.1176/ajp.146.8.989

Djursing H, Hagen C, Møller J, Christiansen C (1981) Short- and long-term fluctuations in plasma prolactin concentration in normal subjects. Acta Endocrinol (Copenh) 97(1):1–6. https://doi.org/10.1530/acta.0.0970001

Hadlow NC, Brown S, Wardrop R, Henley D (2014)The effects of season, daylight saving and time of sunrise on serum cortisol in a large population. Chronobiol Int 31(2):243–251. https://doi.org/10.3109/07420528.2013.844162

Hattori T, Munakata M (2015) Blood pressure measurement under standardized indoor condition may mask seasonal blood pressure variation in men with mildly elevated blood pressure. Clin Exp Hypertens 37(4):317–322. https://doi.org/10.3109/10641963.2014.960975

Haus E, Lakatua DJ, Halberg F, Halberg E, Cornelissen G, Sackett LL, Berg HG, Kawasaki T, Ueno M, Uezono K, Matsuoka M, Omae T (1980) Chronobiological studies of plasma prolactin in women in Kyushu, Japan, and Minnesota, USA. J Clin Endocrinol Metab 51(3):632–640. https://doi.org/10.1210/jcem-51-3-632

Holdaway IM, Mason BH, Gibbs EE, Rajasoorya C, Hopkins KD (1991) Seasonal changes in serum melatonin in women with previous breast cancer. Br J Cancer 64(1):149–153. https://doi.org/10.1038/bjc.1991.259

Holdaway IM, Mason BH, Gibbs EE, Rajasoorya C, Lethaby A, Hopkins KD, Evans MC, Lim T, Schooler B (1997) Seasonal variation in the secretion of mammotrophic hormones in normal women and women with previous breast cancer. Breast Cancer Res Treat 42(1):15–22. https://doi.org/10.1023/a:1005743626105

Honma K, Honma S, Kohsaka M, Fukuda N (1992) Seasonal variation in the human circadian rhythm: dissociation between sleep and temperature rhythm. Am J Physiol 262(5 Pt 2):R885–891. https://doi.org/10.1152/ajpregu.1992.262.5.R885

Illnerová H, Zvolsky P, Vanĕcek J (1985) The circadian rhythm in plasma melatonin concentration of the urbanized man: the effect of summer and winter time. Brain Res 328(1):186–189. https://doi.org/10.1016/0006-8993(85)91342-3

Kauppila A, Kivelä A, Pakarinen A, Vakkuri O (1987) Inverse seasonal relationship between melatonin and ovarian activity in humans in a region with a strong seasonal contrast in luminosity. J Clin Endocrinol Metab 65 (5): 823–828. https://doi.org/10.1210/jcem-65-5-823

Koono N (1980) Reciprocal changes in serum concentrations of triiodothyronine and reverse triiodothyronine between summer and winter in normal adult men. Endocrinol Jpn 27 (4): 471–476. https://doi.org/10.1507/endocrj1954.27.471

Коротеева ТВ, Радыш ИВ, Ходорович АМ (2010) Сезонные изменения гормонального обмена у женщин разных этнических групп. Вестник РУДН. Серия: Медицина 4: 250–253. [Koroteeva TV, Radysh IV, Khodorovich AM (2010) Seasonal variation in blood hormone levels in wumen different ethnic grupps. RUDN Journal of Medicine 4: 250–253. (In Russ)].

Kruse HJ, Wieczorek I, Hecker H, Creutzig A, Schellong SM (2002) Seasonal variation of endothelin-1, angiotensin II, and plasma catecholamines and their relation to outside temperature. J Lab Clin Med 140(4):236–241. https://doi.org/10.1067/mlc.2002.127169

Lewy H, Haus E, Ashkenazi IE (2007) Possible linkage between the ability to change the period (tau) of the prolactin and cortisol rhythms in women and breast cancer risk. Chronobiol Int 24(2):365–381. https://doi.org/10.1080/07420520701282349

Lundberg K, Josefsson A, Nordin C (2007) Diurnal and seasonal variation of cholecystokinin peptides in humans. Neuropeptides 41(1):59–63. https://doi.org/10.1016/j.npep.2006.09.049

Maes M, Mommen K, Hendrickx D, Peeters D, D'Hondt P, Ranjan R, De Meyer F, Scharpé S (1997) Components of biological variation, including seasonality, in blood concentrations of TSH, TT3, FT4, PRL, cortisol and testosterone in healthy volunteers. Clin Endocrinol (Oxf) 46(5):587–598. https://doi.org/10.1046/j.1365-2265.1997.1881002.x

Martikainen H, Tapanainen J, Vakkuri O, Leppäluoto J, Huhtaniemi I (1985) Circannual concentrations of melatonin, gonadotrophins, prolactin and gonadal steroids in males in a geographical area with a large annual variation in daylight. Acta Endocrinol (Copenh) 109(4):446–450. https://doi.org/10.1530/acta.0.1090446

Morera AL, Abreu P (2007) Daytime/night-time and summer/winter melatonin and malondialdehyde rhythms: an inverse relationship. J Pineal Res 43(3):313–314. https://doi.org/10.1111/j.1600-079X.2007.00467.x

Nagata H, Izumiyama T, Kamata K, Kono S, Yukimura Y (1976) An increase of plasma triiodothyronine concentration in man in a cold environment. J Clin Endocrinol Metab 43(5):1153–1156. https://doi.org/10.1210/jcem-43-5-1153

Nicolau GY, Lakatua D, Sackett-Lundeen L, Haus E (1984) Circadian and circannual rhythms of hormonal variables in elderly men and women. Chronobiol Int 1(4):301–319. https://doi.org/10.3109/07420528409063911

Pääkkönen T, Leppäluoto J, Mäkinen TM, Rintamäki H, Ruokonen A, Hassi J, Palinkas LA (2008) Seasonal levels of melatonin, thyroid hormones, mood, and cognition near the Arctic Circle. Aviat Space Environ Med 79(7):695–699. https://doi.org/10.3357/asem.2148.2008

Pham DD, Lee JH, Hong KH, Jung YJ, Kim SJ, Leem CH (2020) Seasonal effects on resting energy expenditure are dependent on age and percent body fat. Clin Nutr 39(4):1276–1283. https://doi.org/10.1016/j.clnu.2019.05.021

Radke KJ, Izzo JL Jr (2010) Seasonal variation in haemodynamics and blood pressure-regulating hormones. J Hum Hypertens 24(6):410–416. https://doi.org/10.1038/jhh.2009.75

Радыш ИВ, Коротеева ТВ, Краюшкин СС, Ходорович АМ, Журавлева ЮС (2011) Адаптивные гормональные изменения у здоровых женщин в различные сезоны года. Вестник Волгоградского государственного медицинского университета 1 (37): 91–94. [Radysh IV, Koroteyeva TV, Kraiushkin SS, Hodorovich AM, Zhuravliova JS (2011) Adaptive hormonal changes in healthy women in different seasons. Journal of VolgSMU 1 (37): 91–94. (In Russ)].

Reinberg A, Lagoguey M, Cesselin F, Touitou Y, Legrand JC, Delassalle A, Antreassian J, Lagoguey A (1978) Circadian and circannual rhythms in plasma hormones and other variables of five healthy young human males. Acta Endocrinol (Copenh). 88(3):417–427. https://doi.org/10.1530/acta.0.0880417

Ruhayel Y, Malm G, Haugen TB, Henrichsen T, Bjørsvik C, Grotmol T, Saether T, Malm J, Figenschau Y, Rylander L, Levine RJ, Giwercman A (2007) Seasonal variation in serum concentrations of reproductive hormones and urinary excretion of 6-sulfatoxymelatonin in men living north and south of the Arctic Circle: a longitudinal study. Clin Endocrinol (Oxf) 67(1):85–92. https://doi.org/10.1111/j.1365-2265.2007.02843.x

Smals A, Kloppenborg P, Benraad T (1976) Circannual cycle in plasma testosterone levels in man. Endocrinol. Metab 42 (5): 979–982. https://doi.org/10.1210/jcem-42-5-979

Ткачев АВ, Золкина АН (1987) Сезонная динамика эндокринной функции у человека на Севере. Физиология человека 13(2):328–330. [Tkachev AV, Zolkina AN (1987) Seasonal dynamics of human endocrine functions in the North. Fiziol Cheloveka 13(2):328–330. (In Russ)].

Touitou Y, Carayon A, Reinberg A, Bogdan A, Beck H (1983) Differences in the seasonal rhythmicity of plasma prolactin in elderly human subjects: detection in women but not in men. J Endocrinol 96(1):65–71. https://doi.org/10.1677/joe.0.0960065

Touitou Y, Sulon J, Bogdan A, Reinberg A, Sodoyez JC, Demey-Ponsart E (1983) Adrenocortical hormones, ageing and mental condition: seasonal and circadian rhythms of plasma 18-hydroxy-11-deoxycorticosterone, total and free cortisol and urinary corticosteroids. J Endocrinol 96(1):53–64. https://doi.org/10.1677/joe.0.0960053

Touitou Y, Fèvre M, Bogdan A, Reinberg A, De Prins J, Beck H, Touitou C (1984) Patterns of plasma melatonin with ageing and mental condition: stability of nyctohemeral rhythms and differences in seasonal variations. Acta Endocrinol (Copenh) 106(2):145–151. https://doi.org/10.1530/acta.0.1060145

Ушакина РВ (1977) Сезонные изменения содержания кортикостероидов у практически здоровых молодых людей в условиях муссонного климата Хабаровска. Проблемы эндокринологии 23(1):52–57. [Uchakina RV (1977) Seasonal changes of corticosteroid content in practically healthy young persons under condition of monsoon climate of Khabarovsk. Probl Endokrinol (Mosk) 23(1):52–57. (In Russ)].

Van Cauter EW, Virasoro E, Leclercq R, Copinschi G (1981) Seasonal, circadian and episodic variations of human immunoreactive beta-MSH, ACTH and cortisol. Int J Pept Protein Res 17(1):3–13. https://doi.org/10.1111/j.1399-3011.1981.tb01962.x

Van Cauter E, L'Hermite M, Copinschi G, Refetoff S, Desir D, Robyn C (1981) Quantitative analysis of spontaneous variations of plasma prolactin in normal man. Am J Physiol 241(5):E355–363. https://doi.org/10.1152/ajpendo.1981.241.5.E355

Walker BR, Best R, Noon JP, Watt GC, Webb DJ (1997) Seasonal variation in glucocorticoid activity in healthy men. J Clin Endocrinol Metab 82(12):4015–4019. https://doi.org/10.1210/jcem.82.12.4430

Wehr TA, Giesen HA, Moul DE, Turner EH, Schwartz PJ (1995) Suppression of men's responses to seasonal changes in day length by modern artificial lighting. Am J Physiol 269(1 Pt 2):R173–178. https://doi.org/10.1152/ajpregu.1995.269.1.R173

Hata T, Ogihara T, Maruyama A, Mikami H, Nakamaru M, Naka T, Kumahara Y, Nugent CA (1982) The seasonal variation of blood pressure in patients with essential hypertension. Clin Exp Hypertens A 4(3):341–354. https://doi.org/10.3109/10641968209060747

Kanikowska D, Sato M, Iwase S, Shimizu Y, Nishimura N, Inukai Y, Sugenoya J (2013) Effects of living at two ambient temperatures on 24-h blood pressure and neuroendocrine function among obese and non-obese humans: a pilot study. Int J Biometeorol 57 (3): 475–481. https://doi.org/10.1007/s00484-012-0574-2

Sato M, Kanikowska D, Sugenoya J, Inukai Y, Shimizu Y, Nishimura N, Iwase S (2011) Effects of aging on thermoregulatory responses and hormonal changes in humans during the four seasons in Japan, Int J Biometeorol 55(2): 229–234. https://doi.org/10.1007/s00484-010-0328-y

Svartberg J, Jorde R, Sundsfjord J, Bønaa KH, Barrett-Connor E (2003) Seasonal variation of testosterone and waist to hip ratio in men: the Tromsø study. Endocrinol. Metab 88 (7): 3099–3104. https://doi.org/10.1210/jc.2002-021878

Wehr TA, Moul DE, Barbato G, Giesen HA, Seidel JA, Barker C, Bender C (1993) Conservation of photoperiod-responsive mechanisms in humans. Am J Physiol 265(4 Pt 2):R846–857. https://doi.org/10.1152/ajpregu.1993.265.4.R846

Niehaus M, Lerchl A (1998) Urinary 6-sulfatoxymelatonin profiles in male Djungarian hamsters (Phodopus sungorus) responding and not responding to short-day photoperiods: possible role of elevated daytime levels. J Pineal Res 25(3):167–171. https://doi.org/10.1111/j.1600-079x.1998.tb00555.x

Magri F, Locatelli M, Balza G, Molla G, Cuzzoni G, Fioravanti M, Solerte SB, Ferrari E (1997) Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol Int 14(4):385–396. https://doi.org/10.3109/07420529709001459

McConnell SJ, Ellendorff F (1987) Absence of nocturnal plasma melatonin surge under long and short artificial photoperiods in the domestic sow. J Pineal Res 4(3):347–348. https://doi.org/10.1111/j.1600-079x.1987.tb00857.x

Danilenko KV, Kobelev E, Semenova EA, Aftanas LI (2019) Summer-winter difference in 24-h melatonin rhythms in subjects on a 5-workdays schedule in Siberia without daylight saving time transitions. Physiol Behav 212:112686. https://doi.org/10.1016/j.physbeh.2019.112686

Hofman MA, Skene DJ, Swaab DF (1995) Effect of photoperiod on the diurnal melatonin and 5-methoxytryptophol rhythms in the human pineal gland. Brain Res 671(2):254–260. https://doi.org/10.1016/0006-8993(94)01339-j

Young TK, Kelly JJ, Friborg J, Soininen L, Wong KO (2016) Cancer among circumpolar populations: an emerging public health concern. Int J Circumpolar Health 75:29787. https://doi.org/10.3402/ijch.v75.29787

Reiter RJ, Tan DX, Korkmaz A, Erren TC, Piekarski C, Tamura H, Manchester LC (2007) Light at night, chronodisruption, melatonin suppression, and cancer risk: a review. Crit Rev Oncog 13(4):303–328. https://doi.org/10.1615/critrevoncog.v13.i4.30

Lewy AJ, Lefler BJ, Emens JS, Bauer VK (2006) The circadian basis of winter depression. Proc Natl Acad Sci U S A 103(19):7414–7419. https://doi.org/10.1073/pnas.0602425103

Watad A, Azrielant S, Soriano A, Bracco D, Abu Much A, Amital H (2016) Association between seasonal factors and multiple sclerosis. Eur J Epidemiol 31(11):1081–1089. 2016. https://doi.org/10.1007/s10654-016-0165-3

Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56(4):371–381. https://doi.org/10.1111/jpi.12137

Roelfsema F, Pijl H, Keenan DM, Veldhuis JD (2012) Prolactin secretion in healthy adults is determined by gender, age and body mass index. PLoS One 7(2):e31305. https://doi.org/10.1371/journal.pone.0031305

Lincoln GA, Andersson H, Hazlerigg D (2003) Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 15(4):390–397. https://doi.org/10.1046/j.1365-2826.2003.00990.x

Rajender S, Monica MG, Walter L, Agarwal A (2011) Thyroid, spermatogenesis, and male infertility. Front Biosci (Elite Ed). 3:843–855. https://doi.org/10.2741/e292

Doyle JT, Kinch SH, Brown DF (1965) Seasonal Variation in Serum Cholesterol Concentration. J Chron Dis 18: 657–664. https://doi.org/10.1016/0021-9681(65)90067-6

Kreindl C, Olivares M, Brito A, Araya M, Pizarro F (2014) Variación estacional del perfil lipídico en adultos aparentemente sanos de Santiago, Chile [Seasonal variations in the lipid profile of apparently healthy young adults living in Santiago, Chile]. Arch Latinoam Nutr 64(3):145–152.

Солонин ЮГ, Марков АЛ, Бойко ЕР, Потолицына НН, Паршукова ОИ (2014) Функциональные показатели у участников сателлитных исследований по проекту "марс-500" на севере россии в разные сезоны года. Физиология человека 40(6): 58–66. [Solonin IG, Markov AL, Bojko ER, Potolitsyna NN, Parshukova OI (2014) Functional indices in participants of the satellite study of the mars-500 project in the russian north during different seasons. Human Physiology 40 (6): 634–641. (In Russ)]. https://doi.org/10.1134/S0362119714050156

Danilenko KV, Sergeeva OY, Verevkin EG (2011) Menstrual cycles are influenced by sunshine. Gynecol Endocrinol 27(9):711–716. https://doi.org/10.3109/09513590.2010.521266

Yie SM, Brown GM, Liu GY, Collins JA, Daya S, Hughes EG, Foster WG, Younglai EV (1995) Melatonin and steroids in human pre-ovulatory follicular fluid: seasonal variations and granulosa cell steroid production. Hum Reprod 10(1):50–55. https://doi.org/10.1093/humrep/10.1.50

Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71(16): 2997–3025. https://doi.org/10.1007/s00018-014-1579-2

Olcese JM (2020) Melatonin and Female Reproduction: An Expanding Universe. Front Endocrinol (Lausanne) 11:85. https://doi.org/10.3389/fendo.2020.00085

Hadlow N, Brown S, Wardrop R, Conradie J, Henley D (2018) Where in the world? Latitude, longitude and season contribute to the complex co-ordinates determining cortisol levels. Clin Endocrinol (Oxf) 89(3):299–307. https://doi.org/10.1111/cen.13754

Walter KN, Corwin EJ, Ulbrecht J, Demers LM, Bennett JM, Whetzel CA, Klein LC (2012) Elevated thyroid stimulating hormone is associated with elevated cortisol in healthy young men and women. Thyroid Res 5(1):13. https://doi.org/10.1186/1756-6614-5-13

De Groef B, Van der Geyten S, Darras VM, Kühn ER (2006) Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates. Gen Comp Endocrinol 146(1):62–68. https://doi.org/10.1016/j.ygcen.2005.10.014

Lim CT, Khoo B (2020) Normal Physiology of ACTH and GH Release in the Hypothalamus and Anterior Pituitary in Man. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland HJ, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Purnell J, Singer F, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.

Sarne D (2016) Effects of the Environment, Chemicals and Drugs on Thyroid Function. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland HJ, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Purnell J, Singer F, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.

Woods DR, Davison A, Stacey M, Smith C, Hooper T, Neely D, Turner S, Peaston R, Mellor A (2012) The cortisol response to hypobaric hypoxia at rest and post-exercise. Horm Metab Res 44(4):302–305. https://doi.org/10.1055/s-0032-1304322

Sher L, Oquendo MA, Galfalvy HC, Zalsman G, Cooper TB, Mann JJ (2005) Higher cortisol levels in spring and fall in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 29(4):529–534. https://doi.org/10.1016/j.pnpbp.2005.01.011

Tsuchihashi T, Uezono K, Abe I, Matsuoka M, Kawasaki T (1995) Seasonal variation in 24-h blood pressure pattern of young normotensive women. Hypertens Res. 18(3):209–214. https://doi.org/10.1291/hypres.18.209

Klein DC, Sugden D, Weller JL (1983) Postsynaptic alpha-adrenergic receptors potentiate the beta-adrenergic stimulation of pineal serotonin N-acetyltransferase. Proc Natl Acad Sci USA 80(2): 599–603. https://doi.org/10.1073/pnas.80.2.599

Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 12(2):151–180. https://doi.org/10.1210/edrv-12-2-151

Marti-Soler H, Gubelmann C, Aeschbacher S et al. (2014) Seasonality of cardiovascular risk factors: an analysis including over 230 000 participants in 15 countries. Heart 100(19):1517–1523. https://doi.org/10.1136/heartjnl-2014-305623

Hermida-Dominguez RC, Halberg F (1984) Assessment of the risk of mesor-hypertension. Chronobiologia 11(3):249–262.

Кузьменко НВ, Плисс МГ, Цырлин ВА (2017) Связь между временем года и развитием вазоренальной гипертензии. Артериальная гипертензия 23(6):561–573. [Kuzmenko NV, Pliss MG, Tsyrlin VA (2017) The relationship between the season of the year and the vasorenal hypertension occurrence. Arterial’naya Gipertenziya = Arterial Hypertension 23(6):561–573. (In Russ)]. https://doi.org/10.18705/1607-419X-2017-23-6-561-573

Sumová A, Sládek M, Jác M, Illnerová H (2002) The circadian rhythm of Per1 gene product in the rat suprachiasmatic nucleus and its modulation by seasonal changes in daylength. Brain Res 947(2):260–270. https://doi.org/10.1016/s0006-8993(02)02933-5

Richards J, Cheng KY, All S, Skopis G, Jeffers L, Lynch IJ, Wingo CS, Gumz ML (2013) A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am J Physiol Renal Physiol 305(12):F1697–1704. https://doi.org/10.1152/ajprenal.00472.2013

Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, Emoto N, Okuno Y, Tsujimoto G, Kanematsu A, Ogawa O, Todo T, Tsutsui K, van der Horst GT, Okamura H (2010) Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med 16(1):67–74. https://doi.org/10.1038/nm.2061

Nonaka H, Emoto N, Ikeda K, Fukuya H, Rohman MS, Raharjo SB, Yagita K, Okamura H, Yokoyama M (2001) Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells. Circulation 104(15):1746–1748. https://doi.org/10.1161/hc4001.098048