УЧАСТИЕ ФЕРМЕНТА ГЛИКОГЕН-СИНТАЗЫ КИНАЗЫ-3 И ПОТЕНЦИАЛ-ЗАВИСИМЫХ Сa2+-КАНАЛОВ В ВЕЗИКУЛЯРНОМ ЦИКЛЕ СЕКРЕЦИИ МЕДИАТОРА В ХОЛИНЕРГИЧЕСКИХ ДВИГАТЕЛЬНЫХ НЕРВНЫХ ОКОНЧАНИЯХ СОМАТИЧЕСКОЙ МУСКУЛАТУРЫ ДОЖДЕВОГО ЧЕРВЯ LUMBRICUS TERRESTRIS
PDF

Ключевые слова

потенциал-зависимые Са2 -каналы
динамин
экзоцитоз
эндоцитоз
синаптические везикулы
нервно-мышечное соединение
двигательная мускулатура
аннелиды

Аннотация

Методами флуоресцентной конфокальной микроскопии изучали влияние специфических блокаторов (-конотоксин GVIA, -агатоксин IVA, нитрендипин, SNX-482, мибефрадил) потенциал-зависимых Са2+-каналов N, P/Q, L, R, T-типов, а также ингибитора фермента гликоген-синтазы киназы-3 GSK3 (1-азакенпауллон) на процессы экзо-эндовезикулярного цикла в холинергических нервно-мышечных синапсах соматической мышцы дождевого червя Lumbricus terrestris. В механизмах везикулярного цикла участвуют ионы Са2+, входящие в терминали через все типы потенциал-зависимых Са2+-каналов пресинаптической мембраны. При этом наибольший вклад в процессы эндоцитоза вносят Са2+-каналы N-, P/Q- и L-типов, тогда как экзоцитоза только каналы N- и P/Q-типов. В процессах рециклинга существенную роль играет динамин-зависимый эндоцитоз, а восстановление везикулярных пулов в таких синапсах, преимущественно, происходит при участии клатрин-зависимого эндоцитоза. Можно считать, что базисные механизмы регуляции везикулярного цикла в двигательных нервно-мышечных синапсах являются общими для всего филогенетического древа позвоночных и беспозвоночных животных, начиная с аннелид. При этом значение отдельных регулирующих элементов машины везикулярной секреции у аннелид имеет свою отчетливую специфику.

https://doi.org/10.31857/S0044452925020059
PDF

Литература

Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4: a011353. s://doi.org/10.1101/cshperspect.a011353

Watanabe S, Boucrot E (2017) Fast and ultrafast endocytosis. Curr Opin Cell Biol 47: 64–71. s://doi.org/10.1016/j.ceb.2017.02.013

Gan Q, Watanabe S (2018) Synaptic vesicle endocytosis in different model systems. Front Cell Neurosci 12: 171. s://doi.org/10.3389/fncel.2018.00171

Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A (2022) Role of clathrin and dynamin in clathrin mediated endocytosis/synaptic vesicle recycling and implications in neurological diseases. Front Cell Neurosci 15: 754110. s://doi.org/10.3389/fncel.2021.754110

Clayton EL, Sue N, Smillie KJ, O'Leary T, Bache N, Cheung G, Cole AR, Wyllie DJ, Sutherland C, Robinson PJ, Cousin MA (2010) Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat Neurosci 13: 845–851. s://doi.org/10.1038/nn.2571

Xue L, Zhang Z, McNeil BD, Luo F, Wu XS, Sheng J, Shin W, Wu LG (2012) Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep 1: 632–638. s://doi.org/10.1016/j.celrep.2012.04.011

Parry L, Tanner A, Vinther J (2014) The origin of annelids. Front Palaeontology 57: 1091–1103. s://doi.org/10.1111/pala.12129

Purschke G, Müller MCM (2006) Evolution of body wall musculature. Integr Comp Biol 46: 497–507. s://doi.org/10.1093/icb/icj053

Nurullin LF, Almazov ND, Volkov EM (2024) Calcium-binding proteins in synaptic vesicle exo- and endocytosis in somatic motor nerve endings of the earthworm Lumbricus terrestris. J Evol Biochem Phys 60: 1818–1825. s://doi.org/10.1134/S0022093024050144

Nurullin LF, Volkov EM (2020) Immunofluorescent identification of α1 isoform subunits of voltage-gated Ca2+-channels of CaV1, CaV2, and CaV3 families in areas of cholinergic synapses of somatic muscles in earthworm Lumbricus terrestris. Cell Tiss Biol 14: 316–323. s://doi.org/10.1134/S1990519X20040070

Nurullin LF, Volkov EM (2024) Immunofluorescent identification of dystrophin, actin, and light and heavy myosin chains in somatic cells of earthworm Lumbricus terrestris. Cell Tiss Biol 18: 341–346. s://doi.org/10.1134/S1990519X24700287

Nurullin LF, Almazov ND, Volkov EM (2023) Immunofluorescent identification of GABAergic structures in the somatic muscle of the earthworm Lumbricus terrestris. Biochem Moscow Suppl Ser A 17: 208–213. s://doi.org/10.1134/S1990747823040074

Coleman WL, McCartney LE (2023) GABA has a presynaptic inhibitory effect at Lumbricus terrestris body wall muscle synapses. MicroPubl Biol 2023: 10.17912/micropub.biology.001055. s://doi.org/10.17912/micropub.biology.001055

Dolphin AC (2021) Functions of presynaptic voltage-gated calcium channels. Function (Oxf) 2: zqaa027. s://doi.org/10.1093/function/zqaa027

Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Südhof TC (2011) RIM proteins tether Ca(2+) channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144: 282–295. s://doi.org/10.1016/j.cell.2010.12.029

Kusch V, Bornschein G, Loreth D, Bank J, Jordan J, Baur D, Watanabe M, Kulik A, Heckmann M, Eilers J, Schmidt H (2018) Munc13-3 Is required for the developmental localization of Ca(2+) channels to active zones and the nanopositioning of Cav2.1 near release sensors. Cell Rep 22: 1965–1973. s://doi.org/10.1016/j.celrep.2018.02.010

Li L, Bischofberger J, Jonas P (2007) Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J Neurosci 27: 13420–13429. s://doi.org/10.1523/jneurosci.1709-07.2007

Krick N, Ryglewski S, Pichler A, Bikbaev A, Götz T, Kobler O, Heine M, Thomas U, Duch C (2021) Separation of presynaptic Cav2 and Cav1 channel function in synaptic vesicle exo- and endocytosis by the membrane anchored Ca2+ pump PMCA. Proc Natl Acad Sci U S A 118: e2106621118. s://doi.org/10.1073/pnas.2106621118

Mueller BD, Merrill SA, Watanabe S, Liu P, Niu L, Singh A, Maldonado-Catala P, Cherry A, Rich MS, Silva M, Maricq AV, Wang ZW, Jorgensen EM (2023) CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles. Elife 12: e81407. s://doi.org/10.7554/eLife.81407

Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59: 421–432. s://doi.org/10.1016/0092-8674(89)90027-5

Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147. s://doi.org/10.1038/nrm1313

Ramachandran R, Schmid SL (2018) The dynamin superfamily. Curr Biol 28: R411–R416. s://doi.org/10.1016/j.cub.2017.12.013

Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9: 2595–2609. s://doi.org/10.1091/mbc.9.9.2595

Ferguson SM, Brasnjo G, Hayashi M, Wölfel M, Collesi C, Giovedi S, Raimondi A, Gong LW, Ariel P, Paradise S, O'toole E, Flavell R, Cremona O, Miesenböck G, Ryan TA, De Camilli P (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316: 570–574. s://doi.org/10.1126/science.1140621

Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci U S A 91: 644–648. s://doi.org/10.1073/pnas.91.2.644

Raimondi A, Ferguson SM, Lou X, Armbruster M, Paradise S, Giovedi S, Messa M, Kono N, Takasaki J, Cappello V, O'Toole E, Ryan TA, De Camilli P (2011) Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 70: 1100–1114. s://doi.org/10.1016/j.neuron.2011.04.031

van der Bliek AM, Meyerowitz EM (1991) Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351: 411–414. s://doi.org/10.1038/351411a0

Clark SG, Shurland DL, Meyerowitz EM, Bargmann CI, van der Bliek AM (1997) A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci U S A 94: 10438–10443. s://doi.org/10.1073/pnas.94.19.10438

Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 103: 17955–17960. s://doi.org/10.1073/pnas.0606212103

Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ (2015) Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 20: 810–819. s://doi.org/10.1038/mp.2015.56

Shi B, Jin YH, Wu LG (2022) Dynamin 1 controls vesicle size and endocytosis at hippocampal synapses. Cell Calcium 103: 102564. s://doi.org/10.1016/j.ceca.2022.102564

Lu W, Ma H, Sheng ZH, Mochida S (2009) Dynamin and activity regulate synaptic vesicle recycling in sympathetic neurons. J Biol Chem 284: 1930–1937. s://doi.org/10.1074/jbc.m803691200

Kasprowicz J, Kuenen S, Swerts J, Miskiewicz K, Verstreken P (2014) Dynamin photoinactivation blocks Clathrin and α-adaptin recruitment and induces bulk membrane retrieval. J Cell Biol 204: 1141–1156. s://doi.org/10.1083/jcb.201310090

Douthitt HL, Luo F, McCann SD, Meriney SD (2011) Dynasore, an inhibitor of dynamin, increases the probability of transmitter release. Neuroscience 172: 187–195. s://doi.org/10.1016/j.neuroscience.2010.10.002