МЕХАНИЧЕСКИЕ АЛЬТЕРНАНСЫ В КАРДИОМИЦИТАХ МИОКАРДИАЛЬНЫХ РУКАВОВ ВЕРХНЕЙ ПОЛОЙ ВЕНЫ И ЛЕГОЧНЫХ ВЕН КАК ВОЗМОЖНЫЙ ИСТОЧНИК ЭКТОПИЧЕСКОЙ АКТИВНОСТИ ПРЕДСЕРДИЙ
PDF

Ключевые слова

миокардиальные рукава
кардиомиоциты верхней полой вены
кардиомиоциты легочной вены
укорочение-расслабление саркомеров
механические альтернансы
фибрилляция предсердий

Аннотация

Миокард правого и левого предсердий (RA и LA) продолжается в верхнюю полую вену (SVC) и легочные вены (PV) и формирует миокардиальные рукава, которые являются источниками эктопического возбуждения, вызывающими фибрилляцию предсердий. Мы сравнили динамику саркомеров одиночных кардиомиоцитов из миокардиальных рукавов SVC и PV и предсердий морской свинки. Миоциты SVC характеризовались большим временем достижения пика укорочения и 50% расслабления саркомеров, чем кардиомиоциты других групп. В кардиомиоцитах SVC, PV и ПП отсутствовала корреляции между амплитудой укорочения саркомеров и длиной кардиомиоцита. В кардиомиоцитах миокардиальных рукавов SVC и PV обнаружены альтернансы амплитуды укорочения саркомеров. Альтернансы сократительной функции и отсутствие корреляции между величиной амплитуды укорочения саркомеров и морфометрическими характеристиками клеток в миокардиальных рукавах SVC и PV указывают на возможность формирования уязвимого к патологическим факторам механического субстрата, провоцирующего аритмии.

https://doi.org/10.31857/S0044452925020044
PDF

Литература

Mommersteeg MTM, Brown NA, Prall OWJ, De Gier-de Vries C, Harvey RP, Moorman AFM, Christoffels VM (2007) Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res 101: 902–909. https://doi.org/10.1161/CIRCRESAHA.107.161182

Mamchur S, Mamchur I, Khomenko E, Kokov A, Bokhan N, Sherbinina D (2014) Mechanical function of left atrium and pulmonary vein sleeves before and after their antrum isolation. Medicina 50: 353–359. https://doi.org/10.1016/j.medici.2014.11.008

Yee M, Cohen ED, Domm W, Porter GA, McDavid AN, O’Reilly MA (2018) Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation. Am J Physiol Lung Cell Mol Physiol 314: L846–L859. https://doi.org/10.1152/ajplung.00409.2017

Santangeli P, Zado ES, Hutchinson MD, Riley MP, Lin D, Frankel DS, Supple GE, Garcia FC, Dixit S, Callans DJ, Marchlinski FE (2016) Prevalence and distribution of focal triggers in persistent and long-standing persistent atrial fibrillation. Heart Rhythm 13: 374–382. https://doi.org/10.1016/j.hrthm.2015.10.023

Meijborg VMF, Belterman CNW, De Bakker JMT, Coronel R, Conrath CE (2017) Mechano-electric coupling, heterogeneity in repolarization and the electrocardiographic T-wave. Prog Biophys Mol Biol 130: 356–364. https://doi.org/10.1016/j.pbiomolbio.2017.05.003

Emig R, MacDonald EA, Quinn TA (2024) Cardiac mechano-electric crosstalk: multi-scale observations, computational integration, and clinical implications. J Physiol 602: 4335–4340. https://doi.org/10.1113/JP286706

Butova XA, Myachina TA, Simonova RA, Kochurova AM, Kopylova GV, Khokhlova AD, Shchepkin DV (2024) Contractile characteristics of single cardiomyocytes in the myocardial sleeves of the pulmonary veins of guinea pigs. J Evol Biochem Physiol 60: 1741–1750. https://doi.org/10.1134/S0022093024050077

Russell B, Curtis MW, Koshman YE, Samarel AM (2010) Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol 48: 817–823. https://doi.org/10.1016/j.yjmcc.2010.02.016

Ooie T, Tsuchiya T, Ashikaga K, Takahashi N (2002) Electrical connection between the right atrium and the superior vena cava, and the extent of myocardial sleeve in a patient with atrial fibrillation originating from the superior vena cava. J Cardiovasc Electrophysiol 13: 482–485. https://doi.org/10.1046/j.1540-8167.2002.00482.x

Watanabe K, Nitta J, Inaba O, Sato A, Inamura Y, Kato N, Suzuki M, Goya M, Hirao K, Sasano T (2021) Predictors of non-pulmonary vein foci in paroxysmal atrial fibrillation. J Interv Card Electrophysiol 61: 71–78. https://doi.org/10.1007/s10840-020-00779-x

Kim D, Hwang T, Kim M, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN (2021) Extra-pulmonary vein triggers at de novo and the repeat atrial fibrillation catheter ablation. Front Cardiovasc Med 8: 759967. https://doi.org/10.3389/fcvm.2021.759967

Iwamiya S, Ihara K, Nitta G, Sasano T (2024) Atrial fibrillation and underlying structural and electrophysiological heterogeneity. Int J Mol Sci 25: 10193. https://doi.org/10.3390/ijms251810193

Nyuta E, Takemoto M, Sakai T, Mito T, Masumoto A, Todoroki W, Yagyu K, Ueno J, Antoku Y, Koga T, Ueno T, Tsuchihashi T (2021) Importance of the length of the myocardial sleeve in the superior vena cava in patients with atrial fibrillation. J Arrhythm 37: 43–51. https://doi.org/10.1002/joa3.12494

Yeh HI, Lai YJ, Lee SH, Lee YN, Ko YS, Chen SA, Severs NJ, Tsai CH (2001) Heterogeneity of myocardial sleeve morphology and gap junctions in canine superior vena cava. Circulation 104: 3152–3157. https://doi.org/10.1161/hc5001.100836

Kugler S, Nagy N, Rácz G, Tőkés AM, Dorogi B, Nemeskéri Á (2018) Presence of cardiomyocytes exhibiting Purkinje-type morphology and prominent connexin45 immunoreactivity in the myocardial sleeves of cardiac veins. Heart Rhythm 15: 258–264. https://doi.org/10.1016/j.hrthm.2017.09.044

Chen YJ, Chen YC, Yeh HI, Lin CI, Chen SA (2002) Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation 105: 2679–2685. https://doi.org/10.1161/01.CIR.0000016822.96362.26

Wang P, Yang XC, Liu XL, Bao RF, Ding HY, Li O, Liu TF (2021) Study of the characteristics of the pulmonary vein and superior vena cava of rabbits. J Biomater Tissue Eng 11: 112–122. https://doi.org/10.1166/jbt.2021.2585

Margossian SS, Lowey S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol 85 Pt B: 55–71. https://doi.org/10.1016/0076-6879(82)85009-x

Spiess M, Steinmetz MO, Mandinova A, Wolpensinger B, Aebi U, Atar D (1999) Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments. J Struct Biol 126: 98–104. https://doi.org/10.1006/jsbi.1999.4111

Liu R, Feng HZ, Jin JP (2014) Physiological contractility of cardiomyocytes in the wall of mouse and rat azygos vein. Am J Physiol Cell Physiol 306: C697–C704. https://doi.org/10.1152/ajpcell.00004.2014

Kumar M, Govindan S, Zhang M, Khairallah RJ, Martin JL, Sadayappan S, De Tombe PP (2015) Cardiac myosin-binding protein C and troponin-I phosphorylation independently modulate myofilament length-dependent activation. J Biol Chem 290: 29241–29249. https://doi.org/10.1074/jbc.M115.686790

Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB (2023) Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 299: 102767. https://doi.org/10.1016/j.jbc.2022.102767

Lang D, Medvedev RY, Ratajczyk L, Zheng J, Yuan X, Lim E, Han OY, Valdivia HH, Glukhov AV (2022) Region-specific distribution of transversal-axial tubule system organization underlies heterogeneity of calcium dynamics in the right atrium. Am J Physiol Heart Circ Physiol 322: H269–H284. https://doi.org/10.1152/ajpheart.00381.2021

Cros C, Douard M, Chaigne S, Pasqualin C, Bru-Mercier G, Recalde A, Pascarel-Auclerc C, Hof T, Haïssaguerre M, Hocini M, Jaïs P, Bernus O, Brette F (2023) Regional differences in Ca2+ signaling and transverse-tubules across left atrium from adult sheep. Int J Mol Sci 24: 2347. https://doi.org/10.3390/ijms24032347

Wilson AJ, Schoenauer R, Ehler E, Agarkova I, Bennett PM (2014) Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cell Mol Life Sci 71: 165–181. https://doi.org/10.1007/s00018-013-1374-5

Kanaporis G, Blatter LA (2015) The mechanisms of calcium cycling and action potential dynamics in cardiac alternans. Circ Res 116: 846–856. https://doi.org/10.1161/CIRCRESAHA.116.305404

Narayan SM, Franz MR, Clopton P, Pruvot EJ, Krummen DE (2011) Repolarization alternans reveals vulnerability to human atrial fibrillation. Circulation 123: 2922–2930. https://doi.org/10.1161/CIRCULATIONAHA.110.977827

Muthavarapu N, Mohan A, Manga S, Sharma P, Bhanushali AK, Yadav A, Damani DN, Jais P, Walton RD, Arunachalam SP, Kulkarni K (2023) Targeted atrial fibrillation therapy and risk stratification using atrial alternans. J Cardiovasc Dev Dis 10: 36. https://doi.org/10.3390/jcdd10020036

Butova X, Myachina T, Simonova R, Kochurova A, Mukhlynina E, Kopylova G, Shchepkin D, Khokhlova A (2023) The inter-chamber differences in the contractile function between left and right atrial cardiomyocytes in atrial fibrillation in rats. Front Cardiovasc Med 10: 1203093. https://doi.org/10.3389/fcvm.2023.1203093

Berenfeld O, Zaitsev AV, Mironov SF, Pertsov AM, Jalife J (2002) Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium. Circ Res 90: 1173–1180. https://doi.org/10.1161/01.RES.0000022854.95998.5C

Prabhu S, Voskoboinik A, Mclellan A, Peck K, Nalliah C, Wong G, Azzopardi S, Lee G, Mariani J, Ling L, Taylor A, Kalman J, Kistler P (2017) A comparison of the electrophysiologic and electroanatomic characteristics between the right and left atrium in persistent atrial fibrillation: is the right atrium a window into the left? Heart Lung Circ 26: S176. https://doi.org/10.1016/j.hlc.2017.06.304