Аннотация
Проведены поиск и идентификация белков с высокой осмотической активностью (osmotically active proteins, OAPs) в сыворотке крови представителя альбумин-содержащих костистых рыб - щуки обыкновенной Esox lucius L. с помощью методов 2D-электрофореза и масс-спектрометрии MALDI. С помощью критерия высокого отрицательного заряда белков в диск-электрофорезе было идентифицировано 8 внеклеточных и один внутриклеточный OAPs. Их суммарное относительное содержание составило ~60% от общего белка сыворотки;: ~30% у гемопексина, ~10 и ~12% у ингибиторов протеиназ и аполипопротеинов А (в составе липопротеинов высокой плотности) соответственно, 3.6% у альбумина и «следы» у внутриклеточного Grb14. Согласно аннотациям генной онтологии, основные функции OAPs связаны с защитой и транспортом, а проявлением высокой осмотической активности они обязаны высокому отрицательному заряду. Сравнение списков OAPs у альбумин-содержащей щуки и у безальбуминовых костистых рыб указывает на их совпадение по всем внеклеточным белкам, кроме альбумина. В свете безальбуминовой модели капиллярного обмена, этот факт предполагает рядовую, а не ключевую роль альбумина в контроле осмотического гомеостаза внутри организма. Множественность OAPs в крови костистых рыб отличает их от млекопитающих, у которых на контроле капиллярного обмена жидкости специализируется сывороточный альбумин.
Литература
Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 5(9): 827–835. https://doi.org/10.1038/1869
Nguyen MK, Kurtz I (2006) Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration. J Appl Physiol 100: 1293–1300. https://doi.org/10.1152/japplphysiol.01274.2005
Minchiotti L, Galliano M, Kragh-Hansen U, Peters TJr (2008) Mutations and polymorphisms of the gene of the major human blood protein, serum albumin. Hum Mutat 29(8): 1007–1016. https://doi.org/10.1002/humu.20754
Levitt D, Levitt M (2016) Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med 9: 229–255. https://doi.org/10.2147/IJGM.S102819
Andreeva AM, Bazarova ZM, Toropygin IYu, Vasiliev AS, Federov RA, Pavlova PA, Garina DV (2023) Serum osmotically active proteins in the Atlantic cod Gadus morhua. J Evol Biochem Physiol 59: 325–336. https://doi.org/10.1134/S0022093023020023
Dziegielewska KM, Evans CA, Fossan G, Lorscheider FL, Malinowska DH, Møllgård K, Reynolds ML, Saunders NR, Wilkinson S (1980) Proteins in cerebrospinal fluid and plasma of fetal sheep during development. J Physiol 300: 441. https://doi.org/10.1113/jphysiol.1980.sp013171
Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, Chruszcz M, Minor W (2012) Structural and immunologic characterization of bovine, horse, andrabbit serum albumins. Mol Immunol 52(3–4): 174. https://doi.org/10.1016/j.molimm.2012.05.011
Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, Koke M, Hage DS (2013) Review: glycation of human serum albumin. Clin Chim Acta 425: 64. https://doi.org/10.1016/j.cca.2013.07.013
Andreeva AM (2020) Structural organization of plasma proteins as a factor of capillary filtration in Pisces. Inland Water Biology 13(4): 664–673. https://doi.org/ 10.1134/S1995082920060036
Nynca J, Arnold G, Fröhlich T, Ciereszko A (2017) Proteomic identification of rainbow trout blood plasma proteins and their relationship to seminal plasma proteins. Proteomics 17(11): 1–15. https://doi.org/10.1002/pmic.201600460
Itzhaki RF, Gill DM (1964) A micro-biuret method for estimatingproteins. Anal Biochem 9: 401–410.
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685. https://doi.org/10.1038/227680a0
Gaal O, Medgyesi GA, Vereczkey L (1980) Electrophoresis in the separation of biological macromolecules. Chichester John Wiley & Sons 83–87.
Babin PJ, Vernier JM (1989) Plasma lipoproteins in fish. J Lipid Res 30:467–489
Stoletov K, Fang L, Choi SH, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier P, Witztum JL, Klemke RL, Miller YI (2009) Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circul Res 104: 952. https://doi.org/10.1161/CIRCRESAHA.108.189803
Andreeva АМ, Vasiliev AS, Toropygin IYu, Garina DV, Lamash NE, Filippova AE (2019) Involvement of apolipoprotein A in maintaining tissue fluid balance in goldfish Carassius auratus. Fish Physiol Biochem 45(5): 1717–1730. https://doi.org/10.1007/s10695-019-00662-1
Byrnes L, Gannon F (1990) Atlantic salmon (Salmo salar) serum albumin: cDNA sequence, evolution, and tissue expression. DNA Cell Biol 9(9): 647–655. https://doi.org/10.1089/dna.1990.9.647
Metcalf V, Brennan S, Chambers G, George P (1998) The albumins of Chinook salmon (Oncorhynchus tshawytscha) and brown trout (Salmo trutta) appear to lack a propeptide. Arch Biochem Biophys 350(2): 239–244. https://doi.org/10.1006/abbi.1997.0509
Metcalf VJ, Brennan SO, Chambers GK, George PM (1998) The albumin of the brown trout (Salmo trutta) is a glycoprotein. Biochim Biophys Acta 1386(1): 90–96.
Xu Y, Ding Z (2005) N-terminal sequence and main characteristics of Atlantic salmon (Salmo salar) albumin. Prep Biochem Biotechnol 35(4): 283–290. https://doi.org/10.1080/10826060500218081
Campinho MA, Morgado I, Pinto PI, Silva N, Power DM (2012) The goitrogenic efficiency of thioamides in a marine teleost, sea bream (Sparus auratus). Gen Comp Endocrinol 179(3):369–375. https://doi.org/10.1016/j.ygcen.2012.09.022
Park SW, Kim K, Kim OK, Ro WB, Lee CM (2023) Evaluation of plasma prealbumin as a novel inflammatory biomarker in dogs: a pilot study. Front Vet Sci 10:1142535
Delanghe JR, Langlois MR (2001) Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin Chim Acta 312(1-2):13–23. https://doi.org/10.1016/s0009-8981(01)00586-1
Kueppers F (1971) Alpha-1-antitrypsin: physiology, genetics and pathology. Humangenetik 11(3):177–189. https://doi.org/ 10.1007/BF00274738
Dellière S, Cynober L (2017) Is transthyretin a good marker of nutritional status? Clin Nutr 36(2):364–370. https://doi.org/10.1016/j.clnu.2016.06.004
Jolley CD, Woollett LA, Turley SD, Dietschy JM (1998) Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoprotein or apolipoprotein A-I concentration. J Lipid Res 39(11):2143–2149.
Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP, Veenstra TD, Adkins JN, Pounds JG, Fagan R, Lobley A (2004) The human plasma proteome: a nonredundant list developedby combination of four separate sources. Mol Cell Proteomics 3: 311. https://doi.org/10.1074/mcp.M300127-MCP200
Putnam FW (1975–1987) in: The Plasma Proteins Structure, Function, and Genetic Control (Putnam, F. W., ed). Academic Press, New York, 1-55.
Sha Z, Xu P, Takano T, Liu H, Terhune J, Liu Z (2008) The warm temperature acclimation protein Wap65 as an immune response gene: Its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 45(5): 1458–1469. https://doi.org/10.1016/j.molimm.2007.08.012
Sarropoulou E, Fernandes JM, Mitter K, Magoulas A, Mulero V, Sepulcre MP, Figueras A, Novoa B, Kotoulas G (2010) Evolution of a multifunctional gene: The warm temperature acclimation protein Wap65 in the European seabass Dicentrarchus labrax. Mol Phylogenet Evol 55(2):640–649. https://doi.org/10.1016/j.ympev.2009.10.001
Liu F, Su B, Gao C, Zhou S, Song L, Tan F, Dong X, Ren Y, Li C (2016) Identification and expression analysis of TLR2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Fish Shellfish Immunol 55:654e661. https://doi.org/10.1016/j.fsi.2016.06.047
Li C, Gao C, Fu Q, Su B, Chen J (2017) Identification and expression analysis of fetuin B (FETUB) in turbot (Scophthalmus maximus L.) mucosal barriers following bacterial challenge. Fish Shellfish Immunol 68: 386–394. https://doi.org/10.1016/j.fsi.2017.07.032
Tseng YC, Hwang PP (2008) Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol Part C 148: 419–429. https://doi.org/10.1016/j.cbpc.2008.04.009
Andreeva AM (2019) The strategies of organization of the fish plasma proteome: with and without albumin. Russ J Mar Biol 45(4): 263–274. https://doi.org/10.1134/S1063074019040023
Schulz GE, Schirmer RH (1979) Principles of Protein Structure. New York: Springer-Verlag. 314 p.
Kornmueller K., Vidakovic I., Prassl R. (2019) Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research. Molecules 24(15): 2829(1-28). https://doi.org/10.3390/molecules24152829.
Черний В.И. (2017) Роль и место альбумина в современной инфузионно-трансфузионной терапии. Медицина неотложных состояний 1(80): 23–31. https://doi.org/10.22141/2224-0586.1.80.2017.94448
Andreeva А.М., Martemyanov V., Vasiliev A.S. et al. (2022) Goldfish as a model for studying the effect of hypernatremia on blood plasma lipoproteins. Bratisl Lek Listy 123(3): 172–177. https://doi.org/10.4149/BLL_2022_028
Andreeva AM, Lamash N, Martemyanov VI, Vasiliev AS, Toropygin IY, Garina DV (2024) High-density lipoprotein remodeling affects the osmotic properties of plasma in goldfish under critical salinity. J Fish Biol 104(3): 564–575. https://doi.org/10.1111/jfb.15607