ООЦИТ-ЗИГОТА ДРОЗОФИЛЫ И НЕМАТОДЫ КАК МОДЕЛЬ ЭВОЛЮЦИОННО КОНСЕРВАТИВНЫХ ПРОЦЕССОВ В РАННЕМ РАЗВИТИИ МЛЕКОПИТАЮЩИХ И ЧЕЛОВЕКА
PDF

Ключевые слова

ооцит
зигота
ранний эмбрион
активный транспорт моторами
транспорт токами цитоплазмы
кальциевые волны
протеиновые сети PAR

Аннотация

Понимание молекулярных механизмов созревания ооцита, равно как и раннего эмбрионального развития, имеет фундаментальное значение не только для эмбриологии, но и для медицинской биологии. Однако трудности экспериментальных исследований этого круга проблем у млекопитающих, тем более у человека – очевидны. Также хорошо известно, что многие ключевые процессы и механизмы оогенеза – раннего эмбриогенеза весьма эволюционно консервативны. Они могут быть отслежены с уровня наиболее исследованных модельных беспозвоночных, таких как дрозофила D. melanogaster и круглый червь C. elegans, до млекопитающих и человека. В этом обзоре мы на примере этих модельных беспозвоночных, в сравнении с модельными позвоночными, обсудим консерватизм таких ключевых процессов и механизмов как: (1) Транспорт/локализация мРНК молекулярными моторами; (2) Кальциевая волна; (3) Транспорт/локализация молекул токами цитоплазмы; (4) Сегрегация молекул-детерминант протеиновыми сетями PAR; (5) Сегрегация молекул-детерминант актиновыми филаментами и миозинами. Самая общая проблема этой области – как организуются, и реорганизуются цитоскелетные структуры и протеиновые сети, и как они при этом взаимодействуют с кальциевыми волнами, с токами цитоплазмы и с активным транспортом молекулярными моторами.

Важно, что эти консервативные процессы взаимодействуют друг с другом, и способы и механизмы их взаимодействия также имеют тенденцию быть консервативными. Так, транспорт детерминант развития моторами по цитоскелету взаимосвязан практически со всеми остальными процессами. Существенно и то, что эти процессы и механизмы также имеют тенденцию составлять консервативные сценарии. Так, прототипический сценарий кальциевая волна → реорганизация актимиозинового цитоскелета → генерация цитоплазматических токов прослеживается вплоть до млекопитающих и человека, и его легче изучать в деталях на моделях. Наконец, многие из рассматриваемых консервативных компонентов оказываются вовлеченными в патологические процессы, включая онкологию. Так, гены и кодируемые ими факторы сети PAR, ключевые для механизмов клеточной поляризации, охарактеризованы как онкогены / онкофакторы для ряда модельных объектов.

Анализ масштабных исследований процессов и механизмов раннего развития модельных организмов поднимает ряд общеэволюционных вопросов, обсуждаемых в заключение этого обзора.

https://doi.org/10.31857/S0044452925020014
PDF

Литература

Homem CC, Knoblich JA (2012) Drosophila neuroblasts: a model for stem cell biology. Development 139(23): 4297–4310. https://doi.org/10.1242/dev.080515

Konstantinides N, Rossi AM, Desplan C (2015) Common temporal identity factors regulate neuronal diversity in fly ventral nerve cord and mouse retina. Neuron 85(3): 447–449.

Ajduk A, Zernicka-Goetz M (2016) Polarity and cell division orientation in the cleavage embryo: from worm to human. Mol Hum Reprod 22(10): 691–703.

Ajduk A, Ilozue T, Windsor S, Yu Y, Seres KB, Bomphrey RJ, Tom BD, Swann K, Thomas A, Graham C, Zernicka-Goetz M (2011) Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat Commun 2:417. https://doi.org/10.1038/ncomms1424

Aplin JD (2006) Embryo implantation: the molecular mechanism remains elusive. Reprod Biomed Online 13(6): 833–839.

Kloc M, Etkin LD (2005) RNA localization mechanisms in oocytes. J Cell Sci 118: 269–282.

Farley BM, Ryder SP (2008) Regulation of maternal mRNAs in early development. Crit Rev Biochem Mol Biol 43: 135–162.

Medioni C, Mowry K, Besser F (2012) Principles and roles of mRNA localization in animal development. Development 139(18): 3263–3276.

Vazquez-Pianzola P, Suter B (2012) Conservation of the RNA Transport Machineries and Their Coupling to Translation Control across Eukaryotes. Comp Funct Genomics, Article ID 287852.

Baker J, Theurkauf WE, Schubiger G (1993) Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo. J Cell Biol 122(1): 113–121.

von Dassow G, Schubiger G (1994) How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo. J Cell Biol 127: 1637–1653.

Hecht I, Rappel WJ, Levine H (2009) Determining the scale of the Bicoid morphogen gradient. Proc Natl Acad Sci U S A 106: 1710–1715.

Ganguly S, Williams LS, Palacios IM, Goldstein RE (2012) Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture. Proc Natl Acad Sci U S A 109(38): 15109–15114.

York-Andersen AH, Hu Q, Wood BW, Wolfner MF, Weil TT (2020) A calcium-mediated actin redistribution at egg activation in Drosophila. Mol Reprod Dev 87(2): 293–304.

Neumüller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23(23): 2675–2699. https://doi.org/10.1101/gad.1850809.

Knoblich JA (2010) Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 11(12): 849–860.

Nance J, Zallen J (2011) Elaborating polarity: PAR proteins and the cytoskeleton. Development 138: 799–809.

Zhou Y (2012) Cortical development and asymmetric cell divisions. Front Biol 7: 297–306.

Noatynska A, Tavernier N, Gotta M, Pintard L (2013) Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms? Open Biol 3(8): 130083.

Wheatley S, Kulkarni S, Karess R (1995) Drosophila nonmuscle myosin II is required for rapid cytoplasmic transport during oogenesis and for axial nuclear migration in early embryos. Development 121: 1937–1946.

Royou A, Sullivan W, Karess R (2002) Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J Cell Biol 158(1): 127–137.

Kaneuchi T, Sartain CV, Takeo S, Horner VL, Buehner NA, Aigaki T, Wolfner MF (2015) Calcium waves occur as Drosophila oocytes activate. Proc Natl Acad Sci U S A 112(3): 791–796.

Sardet C, Prodon F, Pruliere G, Chenevert J (2004) Polarization of eggs and embryos: some common principles. Med Sci (Paris) 20: 414–423.

Gregor T, Garcia HG, Little SC (2014) The embryo as a laboratory: quantifying transcription in Drosophila. Trends Genet 30(8): 364–375.

Спиров АВ, Мясникова ЕМ (2019) Эволюционный консерватизм генных регуляторных сетей временно́й спецификации нейробластов. Молекулярная биология 53(2): 225–239. [Spirov AV, Myasnikova EM (2019) Evolutionary conservatism of temporal identity of neuroblasts. Mol Biol 53(2): 225–239. (In Russ)] https://doi.org/10.1134/S0026898419020150

Heraud-Farlow JE, Kiebler MA (2014) The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity. Trends Neurosci 37(9): 470–479.

Peredo J, Villace P, Ortin J, de Lucas S (2014) Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation. PLoS One 9: e113704.

Rongo C, Lehmann R (1996) Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends Genet 12: 102–109.

Baum B (2002) Drosophila oogenesis: generating an axis of polarity. Curr Biol 12: R835–R837.

Susor A, Kubelka M (2017) Translational regulation in the mammalian oocyte. Results Probl Cell Differ 63: 257–295.

Jansova D, Tetkova A, Koncicka M, Kubelka M, Susor A (2018) Localization of RNA and translation in the mammalian oocyte and embryo. PLoS One 13(3): e0192544.

Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R (2011) Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3‑complex driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol 13: 1252–1258.

Li R, Albertini DF (2013) The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol 14(3): 141–152.

Kugler JM, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly 3(1): 15–28.

Fahmy K, Akber M, Cai X, Koul A, Hayder A, Baumgartner S (2014) αTubulin 67C and Ncd are essential for establishing a cortical microtubular network and formation of the Bicoid mRNA gradient in Drosophila. PLoS One 9(11): e112053.

Cai X, Akber M, Spirov A, Baumgartner S (2017) Cortical movement of Bicoid in early Drosophila embryos is actin- and microtubule-dependent and disagrees with the SDD diffusion model. PLoS One 12(10): e0185443.

Sabirov MA, Myasnikova EM, Spirov AV (2023) mRNA active transport in oocyte-early embryo: 3D agent-based modeling. arXiv preprint arXiv:2301.05006.

Sun QY, Schatten H (2006) Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 131(2): 193–205.

Krauss J, Lopez de Quinto S, Nusslein-Volhard C, Ephrussi A (2009) Myosin-V regulates oskar mRNA localization in the Drosophila oocyte. Curr Biol 19(12): 1058–1063.

Quinlan ME (2016) Cytoplasmic streaming in the Drosophila oocyte. Annu Rev Cell Dev Biol 32: 173–195.

Riechmann V, Ephrussi A (2004) Par-1 regulates bicoid mRNA localisation by phosphorylating Exuperantia. Development 131(23): 5897–5907.

Doerflinger H, Vogt N, Torres IL, Mirouse V, Koch I, Nusslein-Volhard C, St Johnston D (2010) Bazooka is required for polarisation of the Drosophila anterior-posterior axis. Development 137(10): 1765–1773.

Holloway DM, Harrison LG, Spirov AV (2003) Noise in the segmentation gene network of Drosophila, with implications for mechanisms of body axis specification. Proc SPIE 5110: 180–191.

Spirov AV, Holloway DM (2003) Making the body plan: precision in the genetic hierarchy of Drosophila embryo segmentation. In Silico Biol 3: 89–100.

Gregor T, Bialek W, de Ruyter van Steveninck RR, Tank DW, Wieschaus EF (2005) Diffusion and scaling during early embryonic pattern formation. Proc Natl Acad Sci U S A 102(51): 18403–18407.

Gregor T, Alistair RR, McGregor P, Wieschaus EF (2008) Shape and function of the Bicoid morphogen gradient in dipteran species with different sized embryos. Dev Biol 316(2): 350–358.

Holloway DM, Harrison LG, Kosman D, Vanario-Alonso CE, Spirov AV (2006) Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products. Dev Dyn 235: 2949–2960.

Weil TT, Forrest KM, Gavis ER (2006) Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev Cell 11(2): 251–262.

Weil TT, Parton RM, Davis I, Gavis ER (2008) Changes in bicoid mRNA anchoring highlight conserved mechanisms during the oocyte-to-embryo transition. Curr Biol 18: 1055–1061.

Spirov A, Fahmy K, Schneider M, Noll M, Baumgartner S (2009) Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. Development 136: 605–614.

Weil TT, Xanthakis D, Parton R, Dobbie I, Rabouille C, Gavis ER, Davis I (2010) Distinguishing direct from indirect roles for bicoid mRNA localization factors. Development 137: 169–176.

Grimm O, Coppey M, Wieschaus E (2010) Modelling the Bicoid gradient. Development 137(14): 2253–2264. https://doi.org/10.1242/dev.032409

Trovisco V, Belaya K, Nashchekin D, Irion U, Sirinakis G, Butler R, Lee JJ, Gavis ER, St Johnston D (2016) bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring. eLife 5: e17537. https://doi.org/10.7554/eLife.17537

Myasnikova EM, Sabirov MA, Spirov AV (2021) Quantitative Analysis of the Dynamics of Maternal Gradients in the Early Drosophila Embryo. J Comput Biol 28(8): 747–757. https://doi.org/10.1089/cmb.2020.0571

Little SC, Tkačik G, Kneeland TB, Wieschaus EF, Gregor T (2011) The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA. PLoS Biol 9(3): e1000596. https://doi.org/10.1371/journal.pbio.1000596

Ali-Murthy Z, Kornberg TB (2017) Bicoid gradient formation and function in the Drosophila pre-syncytial blastoderm. eLife 5: e13222. https://doi.org/10.7554/eLife.13222

Driever W, Nüsslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54(1): 83–93.

Grimm O, Wieschaus E (2010) The Bicoid gradient is shaped independently of nuclei. Development 137(17): 2857–2862.

Fradin C (2017) On the importance of protein diffusion in biological systems: The example of the Bicoid morphogen gradient. Biochim Biophys Acta Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2017.09.002

Lipshitz HD (2009) Follow the mRNA: a new model for Bicoid gradient formation. Nat Rev Mol Cell Biol 10: 509–512.

Baumgartner S (2018) Seeing is believing: the Bicoid protein reveals its path. Hereditas 155: 28.

Mogilner A, Odde D (2011) Modeling cellular processes in 3D. Trends Cell Biol 21: 692–700. https://doi.org/10.1016/j.tcb.2011.09.007

Athilingam T, Nelanuthala AVS, Breen C, Karedla N, Fritzsche M, Wohland T, Saunders TE (2024) Long-range formation of the Bicoid gradient requires multiple dynamic modes that spatially vary across the embryo. Development 151(3): dev202128. https://doi.org/10.1242/dev.202128

Shlemov A, Alexandrov T, Golyandina N, Holloway D, Baumgartner S, Spirov AV (2021) Quantification reveals early dynamics in Drosophila maternal gradients. PLoS ONE 16(8): e0244701. https://doi.org/10.1371/journal.pone.0244701

Baumgartner S (2024) Revisiting bicoid function: complete inactivation reveals an additional fundamental role in Drosophila egg geometry specification. Hereditas 161(1): 1. https://doi.org/10.1186/s41065-023-00305-9

Ripoche J, Link B, Yucel JK, Tokuyasu K, Malhotra V (1994) Location of Golgi membranes with reference to dividing nuclei in syncytial Drosophila embryos. Proc Natl Acad Sci U S A 91(5): 1878–1882. https://doi.org/10.1073/pnas.91.5.1878

Frescas D, Mavrakis M, Lorenz H, Delotto R, Lippincott-Schwartz J (2006) The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J Cell Biol 173(2): 219–230. https://doi.org/10.1083/jcb.200601156

Cai X, Rondeel I, Baumgartner S (2021) Modulating the bicoid gradient in space and time. Hereditas 158(1): 29. https://doi.org/10.1186/s41065-021-00192-y

Simsek MF, Özbudak EM (2022) Patterning principles of morphogen gradients. Open Biol 12(10): 220224. https://doi.org/10.1098/rsob.220224

Gagnon JA, Kreiling JA, Powrie EA, Wood TR, Mowry KL (2013) Directional Transport Is Mediated by a Dynein-Dependent Step in an RNA Localization Pathway. PLoS Biol 11(4): e1001551. https://doi.org/10.1371/journal.pbio.1001551

Takahashi K, Ishii K, Yamashita M (2018) Staufen1, Kinesin1 and microtubule function in cyclin B1 mRNA transport to the animal polar cytoplasm of zebrafish oocytes. Biochem Biophys Res Commun 503(4): 2778–2783. https://doi.org/10.1016/j.bbrc.2018.08.039

Winata CL, Korzh V (2018) The translational regulation of maternal mRNAs in time and space. FEBS Lett 592: 3007–3023.

Pilaz LJ, Silver DL (2017) Moving messages in the developing brain—emerging roles for mRNA transport and local translation in neural stem cells. FEBS Lett 591(11): 1526–1539. https://doi.org/10.1002/1873-3468.12626

Avilés-Pagán EE, Orr-Weaver TL (2018) Activating embryonic development in Drosophila. Semin Cell Dev Biol 84: 100–110.

Ducibella T, Fissore R (2008) The roles of Ca++, downstream protein kinases signaling in regulating fertilization and the activation of development. Dev Biol 315: 257–279.

Soundarrajan DK, Huizar FJ, Paravitorghabeh R, Robinett T, Zartman JJ (2021) From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control. PLoS Comput Biol 17(11): e1009543. https://doi.org/10.1371/journal.pcbi.1009543

Stein P, Savy V, Williams AM, Williams CJ (2020) Modulators of calcium signalling at fertilization. Open Biol 10(7): 200118. https://doi.org/10.1098/rsob.200118

Hu Q, Wolfner MF (2019) Drosophila Trpm mediates calcium influx during egg activation. bioRxiv 663682. https://doi.org/10.1101/663682

Webb SE, Miller AL (2013) Ca(2+) signaling during activation and fertilization in the eggs of teleost fish. Cell Calcium 53(1): 24–31. https://doi.org/10.1016/j.ceca.2012.11.002

Kline D, Kline JT (1992) Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol 149: 80–89.

Swann K, Windsor S, Campbell K, Elgmati K, Nomikos M, Zernicka-Goetz M, Amso N, Lai FA, Thomas A, Graham C (2012) Phospholipase C-ζ-induced Ca2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil Steril 97 (3): 742–747.

Ducibella T, Schultz RM, Ozil JP (2006) Role of calcium signals in early development. Semin Cell Dev Biol 17: 324–332.

Wolke U, Jezuit EA, Priess JR (2007) Actin-dependent cytoplasmic streaming in C. elegans oogenesis. Development 134: 2227–2236.

Palacios IM, St Johnston D (2002) Kinesin light chain–independent function of the kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 129 (23): 5473–5485.

Gutzeit H (1986) The role of microtubules in the differentiation of ovarian follicles during vitellogenesis in Drosophila. Rouxs Arch Dev Biol 195 (3): 173–181.

Dutta S, Farhadifar R, Lu W, Kabacaoğlu G, Blackwell R, Stein DB, Lakonishok M, Gelfand VI, Shvartsman SY, Shelley MJ (2024) Self-organized intracellular twisters. Nat Phys 20: 666–674. https://doi.org/10.1038/s41567-023-02372-1

Trong PK, Doerflinger H, Dunkel J, Johnston DS, Goldstein R (2015) Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis. eLife 4: e06088.

Sinsimer KS, Jain RA, Chatterjee S, Gavis ER (2011) A late phase of germ plasm accumulation during Drosophila oogenesis requires Lost and Rumpelstiltskin. Development 138 (16): 3431–3440.

Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13 (14): 1159–1168.

Weil TT, Forrest KM, Gavis ER (2006) Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev Cell 11 (2): 251–262.

Bor B, Bois JS, Quinlan ME (2015) Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes. Cytoskeleton 72 (1): 1–15.

Wang H, Li Y, Yang J, Duan X, Kalab P, Sun SX, Li R (2020) Symmetry breaking in hydrodynamic forces drives meiotic spindle rotation in mammalian oocytes. Sci Adv 6 (14): eaaz5004.

Morais-de-Sa E, Mukherjee A, Lowe N, St Johnston D (2014) Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity. Development 141 (15): 2984–2992.

Siller KH, Doe CQ (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11 (4): 365–374.

Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J (2020) Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc Lond B Biol Sci 375 (1809): 20190555. https://doi.org/10.1098/rstb.2019.0555

Guan G, Zhao Z, Tang C (2022) Delineating the mechanisms and design principles of Caenorhabditis elegans embryogenesis using in toto high-resolution imaging data and computational modeling. Comput Struct Biotechnol J 20: 5500–5515. https://doi.org/10.1016/j.csbj.2022.08.024

Jia M, Shan Z, Yang Y, Liu C, Li J, Luo Z-G, Zhang M, Cai Y, Wen W, Wang W (2015) The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division. Nat Commun 6: 8381. https://doi.org/10.1038/ncomms9381

Dickinson DJ, Schwager F, Pintard L, Gotta M, Goldstein B (2017) A single-cell biochemistry approach reveals PAR complex dynamics during cell polarization. Dev Cell 42: 416–434. https://doi.org/10.1016/j.devcel.2017.07.012

Hong Y (2018) aPKC: the kinase that phosphorylates cell polarity. F1000Res 7:F1000 Faculty Rev-903. https://doi.org/10.12688/f1000research.14476.1

Landskron L, Steinmann V, Bonnay F, Burkard TR (2018) The asymmetrically segregating lncRNA cherub is required for transforming stem cells into malignant cells. eLife 7: e31347. https://doi.org/10.7554/eLife.31347

Kusek G, Campbell M, Doyle F, Tenenbaum SA, Kiebler M, Temple S (2012) Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression. Cell Stem Cell 11: 505–516. https://doi.org/10.1016/j.stem.2012.07.001

Vessey JP, Amadei G, Burns SE, Kiebler MA, Kaplan DR, Miller FD (2012) An asymmetrically localized Staufen2-dependent RNA complex regulates maintenance of mammalian neural stem cells. Cell Stem Cell 11: 517–528. https://doi.org/10.1016/j.stem.2012.07.002

Wen W, Zhang M (2017) Protein complex assemblies in epithelial cell polarity and asymmetric cell division. J Mol Biol 430(19): 3504–3520. https://doi.org/10.1016/j.jmb.2017.06.019

Munro E (2017) Protein clustering shapes polarity protein gradients. Dev Cell 42(4): 309–311. https://doi.org/10.1016/j.devcel.2017.08.005

Harris TJC (2017) Protein clustering for cell polarity: Par-3 as a paradigm. F1000Research 6(F1000 Faculty Rev): 1620. https://doi.org/10.12688/f1000research.12166.1

Myasnikova E, Spirov A (2020) Gene regulatory networks in Drosophila early embryonic development as a model for the study of the temporal identity of neuroblasts. Biosystems 197: 104192. https://doi.org/10.1016/j.biosystems.2020.104192

Lv Z, de-Carvalho J, Telley IA, Großhans J (2021) Cytoskeletal mechanics and dynamics in the Drosophila syncytial embryo. J Cell Sci 134(4): jcs246496. https://doi.org/10.1242/jcs.246496

Alarcon VB, Elinson RP (2001) RNA anchoring in the vegetal cortex of the Xenopus oocyte. J Cell Sci 114: 1731–1741.

Carroll J, FitzHarris G, Marangos P, Halet G (2004) Ca++ signalling and cortical re-organisation during the transition from meiosis to mitosis in mammalian oocytes. Eur J Obstet Gynecol Reprod Biol 115(Suppl 1): S61–S67. https://doi.org/10.1016/j.ejogrb.2004.01.021

Pham TT, Monnard A, Helenius J, Lund E, Lee N, Müller DJ, Cabernard C (2019) Spatiotemporally controlled myosin relocalization and internal pressure generate sibling cell size asymmetry. iScience 13: 9–19. https://doi.org/10.1016/j.isci.2019.02.010

Small LE, Dawes AT (2017) PAR proteins regulate maintenance-phase myosin dynamics during Caenorhabditis elegans zygote polarization. Mol Biol Cell 28(16): 2220–2231. https://doi.org/10.1091/mbc.e16-11-0763

Koenderink GH, Paluch EK (2018) Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol 50: 79–85. https://doi.org/10.1016/j.ceb.2017.12.006

Fernández P, Solé RV (2006) The role of computation in complex regulatory networks. In: Power Laws, Scale-Free Networks and Genome Biology. Springer, Boston, MA. https://doi.org/10.1007/0-387-33916-7_12

Goh G, Cammarata N, Voss C, Carter S, Petrov M, Schubert L, Radford A (2021) Multimodal neurons in artificial neural networks. Distill 6(3): e30. https://doi.org/10.23915/distill.00030

Saczko-Brack D, Warchol E, Rogez B, Kröss M, Heissler SM, Sellers JR, Batters C, Veigel C (2016) Self-organization of actin networks by a monomeric myosin. Proc Natl Acad Sci USA 113(52): E8387–E8395. https://doi.org/10.1073/pnas.1612719113

Ennomani H, Letort G, Guérin C, Martiel J-L, Cao W, Nédélec F, De La Cruz EM, Théry M, Blanchoin L (2016) Architecture and connectivity govern actin network contractility. Curr Biol 26: 616–626. https://doi.org/10.1016/j.cub.2015.12.069

Koenderink GH, Paluch EK (2018) Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol 50: 79–85. https://doi.org/10.1016/j.ceb.2017.12.006

Alvarado J, Cipelletti L, Koenderink GH (2019) Uncovering the dynamic precursors to motor-driven contraction of active gels. Soft Matter 15: 8552–8565. https://doi.org/10.1039/C9SM01142D

Lee G, Leech G, Rust MJ, Das M, McGorty RJ, Ross JL, Robertson-Anderson RM (2021) Myosin-driven actin-microtubule networks exhibit self-organized contractile dynamics. Sci Adv 7(6): eabe4334. https://doi.org/10.1126/sciadv.abe4334

Nédélec FJ, Surrey T, Maggs AC, Leibler S (1997) Self-organization of microtubules and motors. Nature 389: 305–308. https://doi.org/10.1038/38532

Wu K-T, Hishamunda JB, Chen DTN, DeCamp SJ, Chang Y-W, Fernández-Nieves A, Fraden S, Dogic Z (2017) Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 355: eaal1979. https://doi.org/10.1126/science.aal1979

Ross TD, Lee HJ, Qu Z, Banks RA, Phillips R, Thomson M (2019) Controlling organization and forces in active matter through optically defined boundaries. Nature 572: 224–229. https://doi.org/10.1038/s41586-019-1447-1

Sanchez T, Chen DTN, DeCamp SJ, Heymann M, Dogic Z (2012) Spontaneous motion in hierarchically assembled active matter. Nature 491: 431–434. https://doi.org/10.1038/nature11591

Farhadi L, Fermino Do Rosario C, Debold EP, Baskaran A, Ross JL (2018) Active self-organization of actin-microtubule composite self-propelled rods. Front Phys 6: 75. https://doi.org/10.3389/fphy.2018.00075

Stanhope KT, Yadav V, Santangelo CD, Ross JL (2017) Contractility in an extensile system. Soft Matter 13: 4268–4277. https://doi.org/10.1039/C7SM00456A

Gross P, Kumar KV, Goehring NW, Bois JS, Hoege C, Jülicher F, Grill SW (2019) Guiding self-organized pattern formation in cell polarity establishment. Nat Phys 15: 293–300. https://doi.org/10.1038/s41567-018-0358-7

Illukkumbura R, Bland T, Goehring NW (2020) Patterning and polarization of cells by intracellular flows. Curr Opin Cell Biol 62: 123–134. https://doi.org/10.1016/j.ceb.2019.10.005

Bhatnagar A, Nestler M, Gross P, Kramar M, Leaver M, Voigt A, Grill SW (2023) Axis convergence in C. elegans embryos. Curr Biol 33(23): 5096–5108.e15. https://doi.org/10.1016/j.cub.2023.10.050

Bland T, Hirani N, Briggs DC, Rossetto R, Ng K, Taylor IA, McDonald NQ, Zwicker D, Goehring NW (2024) Optimized PAR-2 RING dimerization mediates cooperative and selective membrane binding for robust cell polarity. EMBO J 43(15): 3214–3239. https://doi.org/10.1038/s44318-024-00123-3

Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P (2019) Drosophila melanogaster: a model organism to study cancer. Front Genet 10: 51. https://doi.org/10.3389/fgene.2019.00051

Chen G, Kong J, Tucker-Burden C, Anand M, Rong Y, Rahman F, Moreno CS, Van Meir EG, Hadjipanayis CG, Brat DJ (2014) Human Brat ortholog TRIM3 is a tumor suppressor that regulates asymmetric cell division in glioblastoma. Cancer Res 74: 4536–4548. https://doi.org/10.1158/0008-5472.CAN-14-0027

Lin WH, Asmann YW, Anastasiadis PZ (2015) Expression of polarity genes in human cancer. Cancer Inform 14(Suppl 3):15–28. https://doi.org/10.4137/CIN.S17211

Skinner B, Song JCW (2019) Polarity is a matter of perspective. Nat Mater 18: 532–533. https://doi.org/10.1038/s41563-019-0381-2

Fomicheva M, Tross EM, Macara IG (2019) Polarity proteins in oncogenesis. Curr Opin Cell Biol 62: 26–30. https://doi.org/10.1016/j.ceb.2019.07.001

Aranda V, Nolan ME, Muthuswamy SK (2008) Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 27(55): 6878–6887. https://doi.org/10.1038/onc.2008.342

Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 118: 505–515. https://doi.org/10.1242/jcs.01663

Jedrusik A, Parfitt DE, Guo G, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M (2008) Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22: 2692–2706. https://doi.org/10.1101/gad.486308