UDP-ГЛИКОЗИЛТРАНСФЕРАЗЫ И ИХ РОЛЬ В МЕТАБОЛИЗМЕ КСЕНОБИОТИКОВ
PDF

Ключевые слова

UDP-гликозилтрансфераза
система детоксикации
ксенобиотики
промышленные загрязнители
металлы
пестициды
лекарственные средства
природные загрязнители

Аннотация

UDP-гликозилтрансферазы (UGTs) принадлежат к сложному суперсемейству гликозилтрансфераз. Они катализируют реакции гликозилирования – ковалентного присоединения сахара из кофактора (UDP-гликозида) к соответствующей функциональной группе липофильного субстрата, играя тем самым важную роль в клеточном гомеостазе многих групп организмов (млекопитающих, членистоногих, растений и т.д.). UGTs относятся к основным ферментам II фазы детоксикации ксенобиотиков различной природы (металлов, природных соединений, лекарственных препаратов, промышленных загрязнителей, пестицидов и т.д.). Интерес к данной группе ферментов человека обусловлен их ролью в метаболизме лекарственных препаратов и участием в развитии лекарственной устойчивости раковых клеток. UDP-гликозилтрансферазы беспозвоночных (особенно, насекомых) привлекают внимание в связи с их участием в развитии устойчивости к пестицидам. Однако точная роль в биотрансформации ксенобиотиков отдельных семейств и подсемейств UGTs по-прежнему не установлена, что подчеркивает важность дальнейшего изучения данных ферментов. Данный обзор подготовлен с целью дать представление о межвидовом разнообразии UDP-гликозилтрансфераз и особенностях их взаимодействия с ксенобиотиками. Среди общих сведений о суперсемействе UGTs дано краткое описание структуры и локализации фермента, ферментативной реакции и механизма катализа на примере UDP-глюкуронозилтрансферазы. Приведены данные о влиянии промышленных загрязнителей, металлов, пестицидов, лекарственных средств и природных соединений на ферментативную активность UGTs и уровень экспрессии кодирующих генов у позвоночных и беспозвоночных (членистоногих). Отраженное в обзоре разнообразие ферментов UGTs и их субстратов демонстрирует широкие возможности организма животных с точки зрения защиты от воздействия ксенобиотиков.

https://doi.org/10.31857/S0044452924050018
PDF

Литература

Rowland A, Miners JO, Mackenzie PI (2013) The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. The International Journal of Biochemistry & Cell Biology 45(6): 1121–1132. https://doi.org/10.1016/j.biocel.2013.02.019

Hu B, Zhang S-H, Ren M-M, Tian X-R, Wei Q, Mburu DK, Su J-Y (2017) The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. Insect Science 26(2): 199–216. https://doi.org/10.1111/1744-7917.12538

Palli SR (2020) CncC/Maf-mediated xenobiotic response pathway in insects. Arch Insect Biochem Physiol 104(2):e21674. https://doi.org/10.1002/arch.21674

Al-Hamadani MYI, Alzahrani AM, Yousef MI, Kamel MA, El-Sayed WM (2020) Gold Nanoparticles Perturb Drug-Metabolizing Enzymes and Antioxidants in the Livers of Male Rats: Potential Impact on Drug Interactions. Int J Nanomedicine 15: 5005–5016. https://doi.org/10.2147/IJN.S248194

Lu K, Song Y, Zeng R (2021) The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Curr Opin Insect Sci 43: 103–107. https://doi.org/10.1016/j.cois.2020.11.004

Fernando HSD., Saavedra-Rodriguez K, Perera R, Black WC 4th, De Silva BGDNK (2020) Resistance to commonly used insecticides and underlying mechanisms of resistance in Aedes aegypti (L.) from Sri Lanka. Parasit Vectors 10;13(1):407. https://doi.org/10.1186/s13071-020-04284-y

Bo H, Miaomiao R, Jianfeng F, Sufang H, Xia W, Elzaki MEA, Chris B, Palli SR, Jianya S (2020) Xenobiotic transcription factors CncC and maf regulate expression of CYP321A16 and CYP332A1 that mediate chlorpyrifos resistance in Spodoptera exigua. J Hazard Mater 398:122971. https://doi.org/10.1016/j.jhazmat.2020.122971

Faucon F, Gaude T, Dusfour I, Navratil V, Corbel V, Juntarajumnong W, Girod R, Poupardin R, Boyer F, Reynaud S, David JP (2017) In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: An integrated next-generation sequencing approach. PLoS Negl Trop Dis 11(4):e0005526. https://doi.org/10.1371/journal.pntd.0005526

Nkya TE, Akhouayri I, Kisinza W, David JP (2013) Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol 43(4): 407–416. https://doi.org/10.1016/j.ibmb.2012.10.00

Pan Y, Wen S, Chen X, Gao X, Zeng X, Liu X, Tian F, Shang Q (2020) UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii Glover. Pestic Biochem Physiol 166:104565. https://doi.org/10.1016/j.pestbp.2020.104565

Rouleau M, Tourancheau A, Girard-Bock C, Villeneuve L, Vaucher J, Duperré AM, Audet-Delage Y, Gilbert I, Popa I, Droit A, Guillemette C (2016) Divergent Expression and Metabolic Functions of Human Glucuronosyltransferases through Alternative Splicing. Cell Rep 17(1): 114–124. https://doi.org/10.1016/j.celrep.2016.08.077

Grancharov K, Naydenova Z, Lozeva S, Golovinsky E (2001) Natural and synthetic inhibitors of UDP-glucuronosyltransferase. Pharmacol Ther 89(2): 171–186. https://doi.org/10.1016/s0163-7258(00)00109-1

Cao YF, Du Z, Zhu ZT, Sun HZ, Fu ZW, Yang K, Liu YZ, Hu CM, Dong PP, Gonzalez FJ, Fang ZZ (2017) Inhibitory effects of fifteen phthalate esters in human cDNA-expressed UDP-glucuronosyltransferase supersomes. Chemosphere 185: 983–990. https://doi.org/10.1016/j.chemosphere.2017.07.105

Maruo Y, Iwai M, Mori A, Sato H, Takeuchi Y (2005) Polymorphism of UDP-glucuronosyltransferase and drug metabolism. Curr Drug Metab 6(2): 91–99. https://doi.org/10.2174/1389200053586064

Kondo M, Ikenaka Y, Nakayama SMM, Kawai YK, Ishizuka M (2022) Duplication, Loss, and Evolutionary Features of Specific UDP-Glucuronosyltransferase Genes in Carnivora (Mammalia, Laurasiatheria). Animals (Basel) 12(21):2954. https://doi.org/10.3390/ani12212954

Lv X, Xia Y, Finel M, Wu J, Ge G, Yang L (2019) Recent progress and challenges in screening and characterization of UGT1A1 inhibitors. Acta Pharm Sin B 9(2): 258–278. https://doi.org/10.1016/j.apsb.2018.09.005

Mróz A, Mazerska Z (2015) Glukuronidacja leków przeciwnowotworowych--detoksyfikacja, mechanizm oporności czy sposób na formę proleku? [Glucuronidation of antitumour therapeutics--detoxification, mechanism of resistance or prodrug formation?]. Postepy Hig Med Dosw (Online) 69: 1462–1477.

Miyauchi Y, Kurita A, Yamashita R, Takamatsu T, Ikushiro S, Mackenzie PI, Tanaka Y, Ishii Y (2020) Hetero-oligomer formation of mouse UDP-glucuronosyltransferase (UGT) 2b1 and 1a1 results in the gain of glucuronidation activity towards morphine, an activity which is absent in homo-oligomers of either UGT. Biochem Biophys Res Commun 525(2): 348–353. https://doi.org/10.1016/j.bbrc.2020.02.075

Osborne MJ, Coutinho de Oliveira L, Volpon L, Borden KLB (2018) Backbone assignment of the apo-form of the human C-terminal domain of UDP-glucuronosyltransferase 1A (UGT1A). Biomol NMR Assign 12(2): 315–318. https://doi.org/10.1007/s12104-018-9830-7

Iwano H, Ujita W, Nishikawa M, Ishii S, Inoue H, Yokota H (2014) Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP-glucuronosyltransferase and cytochrome P450 1A1 expression in rat liver. Int J Food Sci Nutr 65(2): 241–244. https://doi.org/10.3109/09637486.2013.845650

Wang M, Liu X, Shi L, Liu J, Shen G, Zhang P, Lu W, He L (2018) Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval). Insect Sci 27(2): 276–291. https://doi.org/10.1111/1744-7917.12637

Meech R, Miners JO, Lewis BC, Mackenzie PI (2012) The glycosidation of xenobiotics and endogenous compounds: versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol Ther 134(2): 200–218. https://doi.org/10.1016/j.pharmthera.2012.01.009

Pan Y, Xu P, Zeng X, Liu X, Shang Q (2019) Characterization of UDP-Glucuronosyltransferases and the Potential Contribution to Nicotine Tolerance in Myzus persicae. Int J Mol Sci 20(15):3637. https://doi.org/10.3390/ijms20153637

Hooft JM, Lou Y, Squires EJ, Cant JP, Bureau DP (2021) Development of a microplate method for the determination of hepatic UDP-glucuronosyltransferase activity in rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 248:109114. https://doi.org/10.1016/j.cbpc.2021.109114

Kasteel EEJ, Darney K, Kramer NI, Dorne JLCM, Lautz LS (2020) Human variability in isoform-specific UDP-glucuronosyltransferases: markers of acute and chronic exposure, polymorphisms and uncertainty factors. Arch Toxicol 94(8): 2637–2661. https://doi.org/10.1007/s00204-020-02765-8

Sun H, Zhang T, Wu Z, Wu B (2015) Warfarin is an effective modifier of multiple UDP-glucuronosyltransferase enzymes: evaluation of its potential to alter the pharmacokinetics of zidovudine. J Pharm Sci 104(1): 244–256. https://doi.org/10.1002/jps.24250

Kaur G, Gupta SK, Singh P, Ali V, Kumar V, Verma M (2020) Drug-metabolizing enzymes: role in drug resistance in cancer. Clin Transl Oncol 22(10): 1667–1680. https://doi.org/10.1007/s12094-020-02325-7

Strassburg CP, Lankisch TO, Manns MP, Ehmer U (2008) Family 1 uridine-5'-diphosphate glucuronosyltransferases (UGT1A): from Gilbert's syndrome to genetic organization and variability. Arch Toxicol 82(7): 415–433. https://doi.org/10.1007/s00204-008-0314-x

Ritter JK (2000) Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129(1–2): 171–193. https://doi.org/10.1016/s0009-2797(00)00198-8

Bock KW (2016) The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution. Biochem Pharmacol 99: 11–7. https://doi.org/10.1016/j.bcp.2015.10.001

Tukey RH, Strassburg CP (2000) Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40: 581–616. https://doi.org/10.1146/annurev.pharmtox.40.1.581

Lv X, Zhang JB, Hou J, Dou TY, Ge GB, Hu WZ, Yang L (2019) Chemical Probes for Human UDP-Glucuronosyltransferases: A Comprehensive Review. Biotechnol J 14(1):e1800002. https://doi.org/10.1002/biot.201800002

Mehboob H, Tahir IM, Iqbal T, Akhter N, Munir N, Riaz M (2017) Genetic Polymorphism of UDP-Glucuronosyltransferase. Genetic Polymorphism 13(8): 159–183. https://doi.org/10.5772/intechopen.69206

Miners JO, McKinnon RA, Mackenzie PI (2002) Genetic polymorphisms of UDP-glucuronosyltransferases and their functional significance. Toxicology 181–182: 453–456. https://doi.org/10.1016/s0300-483x(02)00449-3

Collins SL, Patterson AD (2020) The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B 10(1): 19–32. https://doi.org/10.1016/j.apsb.2019.12.001

Knights KM, Rowland A, Miners JO (2013) Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 76(4): 587–602. https://doi.org/10.1111/bcp.12086

Liu D, Zhang L, Duan LX, Wu JJ, Hu M, Liu ZQ, Wang CY (2019) Potential of herb-drug / herb interactions between substrates and inhibitors of UGTs derived from herbal medicines. Pharmacol Res 150:104510. https://doi.org/10.1016/j.phrs.2019.104510

Wu B, Kulkarni K, Basu S, Zhang S, Hu M (2011) First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci 100(9): 3655–3681. https://doi.org/10.1002/jps.22568

Ahn SJ, Vogel H, Heckel DG (2012) Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem Mol Biol 42(2): 133–147. https://doi.org/10.1016/j.ibmb.2011.11.006

Leaver MJ, Wright J, Hodgson P, Boukouvala E, George SG (2007) Piscine UDP-glucuronosyltransferase 1B. Aquat Toxicol 84(3): 356–365. https://doi.org/10.1016/j.aquatox.2007.06.015

Arriaza RH, Abiskaroon B, Patel M, Daneshian L, Kluza A, Snoeck S, Watkins MB, Hopkins JB, Van Leeuwen T, Grbic M, Grbic V, Borowski T, Chruszcz M (2023) Structural and functional studies reveal the molecular basis of substrate promiscuity of a glycosyltransferase originating from a major agricultural pest. J Biol Chem 299(12):105421. https://doi.org/10.1016/j.jbc.2023.105421

Dong D, Ako R, Hu M, Wu B (2012) Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Xenobiotica 42(8): 808–820. https://doi.org/10.3109/00498254.2012.663515

Wang L, Zhu J, Cui L, Wang Q, Huang W, Yang Q, Ji X, Rui C (2021) Overexpression of Multiple UDP-Glycosyltransferase Genes Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. J Agric Food Chem 69(17): 5198–5205. https://doi.org/10.1021/acs.jafc.1c00638

Li X, Zhu B, Gao X, Liang P (2017) Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Pest Manag Sci 73(7): 1402–1409. https://doi.org/10.1002/ps.4469

Yan MW, Xing XR, Wu FA, Wang J, Sheng S (2021) UDP-glycosyltransferases contribute to the tolerance of parasitoid wasps towards insecticides. Pestic Biochem Physiol 179:104967. https://doi.org/10.1016/j.pestbp.2021.104967

Abdull Razis AF, Konsue N, Ioannides C (2018) Isothiocyanates and Xenobiotic Detoxification. Mol Nutr Food Res 62(18):e1700916. https://doi.org/10.1002/mnfr.201700916

Fay MJ, Nguyen MT, Snouwaert JN, Dye R, Grant DJ, Bodnar WM, Koller BH (2015) Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family. Drug Metab Dispos 43(12): 1838–1846. https://doi.org/10.1124/dmd.115.065482

Flynn AF, Joyce MG, Taylor RT, Bennuru S, Lindrose AR, Sterling SL, Morris CP, Nutman TB, Mitre E (2019) Intestinal UDP-glucuronosyltransferase as a potential target for the treatment and prevention of lymphatic filariasis. PLoS Negl Trop Dis 13(9):e0007687. https://doi.org/10.1371/journal.pntd.0007687

Li X, Shi H, Gao X, Liang P (2018) Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.). Pest Manag Sci 74(3): 695–704. https://doi.org/10.1002/ps.4765

Zhou QH, Qin WW, Finel M, He QQ, Tu DZ, Wang CR, Ge GB (2021) A broad-spectrum substrate for the human UDP-glucuronosyltransferases and its use for investigating glucuronidation inhibitors. Int J Biol Macromol 180: 252–261. https://doi.org/10.1016/j.ijbiomac.2021.03.073

Jiao L, Dai T, Cao T, Jin M, Sun P, Zhou Q (2020) New insight into the molecular basis of chromium exposure of Litopenaeus vannamei by transcriptome analysis. Mar Pollut Bull 160:111673. https://doi.org/10.1016/j.marpolbul.2020.111673

Bock KW, Köhle C (2005) UDP-glucuronosyltransferase 1A6: structural, functional, and regulatory aspects. Methods Enzymol 400: 57–75. https://doi.org/10.1016/S0076-6879(05)00004-2

Hanioka N, Kinashi Y, Tanaka-Kagawa T, Isobe T, Jinno H (2017) Glucuronidation of mono(2-ethylhexyl) phthalate in humans: roles of hepatic and intestinal UDP-glucuronosyltransferases. Arch Toxicol 91(2): 689–698. https://doi.org/10.1007/s00204-016-1708-9

Isobe T, Ohkawara S, Tanaka-Kagawa T, Jinno H, Hanioka N (2017) Hepatic glucuronidation of 4-tert-octylphenol in humans: inter-individual variability and responsible UDP-glucuronosyltransferase isoforms. Arch Toxicol 91(11): 3543–3550. https://doi.org/10.1007/s00204-017-1982-1

Walia G, Smith AD, Riches Z, Collier AC, Coughtrie MWH (2018) The effects of UDP-sugars, UDP and Mg2+on uridine diphosphate glucuronosyltransferase activity in human liver microsomes. Xenobiotica 48(9): 882–890. https://doi.org/10.1080/00498254.2017.1376260

Krempl C, Sporer T, Reichelt M, Ahn SJ, Heidel-Fischer H, Vogel H, Heckel DG, Joußen N (2016) Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochem Mol Biol 71: 49–57. https://doi.org/10.1016/j.ibmb.2016.02.005

Snoeck S, Pavlidi N, Pipini D, Vontas J, Dermauw W, Van Leeuwen T (2019) Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae. Insect Biochem Mol Biol 109: 116–127. https://doi.org/10.1016/j.ibmb.2019.04.010

Wetterhorn KM, Gabardi K, Michlmayr H, Malachova A, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I (2017) Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from Oryza sativa. Biochemistry 56(50): 6585–6596. https://doi.org/10.1021/acs.biochem.7b01007

Ahn SJ, Dermauw W, Wybouw N, Heckel DG, Van Leeuwen T (2014) Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. Insect Biochem Mol Biol 50: 43–57. https://doi.org/10.1016/j.ibmb.2014.04.003

Handford M, Rodriguez-Furlán C, Orellana A (2006) Nucleotide-sugar transporters: structure, function and roles in vivo. Braz J Med Biol Res 39(9): 1149–1158. https://doi.org/10.1590/s0100-879x2006000900002

Yang Z, Xiao T, Lu K (2023) Contribution of UDP-glycosyltransferases to chlorpyrifos resistance in Nilaparvata lugens. Pestic Biochem Physiol 190:105321. https://doi.org/10.1016/j.pestbp.2022.105321

Wang Y, Huang H, Wu Q (2014) Characterization of the zebrafish Ugt repertoire reveals a new class of drug-metabolizing UDP glucuronosyltransferases. Mol Pharmacol 86(1): 62–75. https://doi.org/10.1124/mol.113.091462

Официальный сайт Комитет по номенклатуре UGTs при Вашингтонском Государственном Университе – URL: https://labs.wsu.edu/ugt/ (дата обращения: 25.05.2024).

Woelflingseder L, Warth B, Vierheilig I, Schwartz-Zimmermann H, Hametner C, Nagl V, Novak B, Šarkanj B, Berthiller F, Adam G, Marko D (2019) The Fusarium metabolite culmorin suppresses the in vitro glucuronidation of deoxynivalenol. Arch Toxicol 93(6): 1729–1743. https://doi.org/10.1007/s00204-019-02459-w

Xu L, Zheng R, Xie P, Guo Q, Ji H, Li T (2020) Dysregulation of UDP-glucuronosyltransferases in CCl4 induced liver injury rats. Chem Biol Interact 325:109115. https://doi.org/10.1016/j.cbi.2020.109115

Robin S, Hassine KB, Muthukumaran J, Jurkovic Mlakar S, Krajinovic M, Nava T, Uppugunduri CRS, Ansari M (2022) A potential implication of UDP-glucuronosyltransferase 2B10 in the detoxification of drugs used in pediatric hematopoietic stem cell transplantation setting: an in silico investigation. BMC Mol Cell Biol 23(1):5. https://doi.org/10.1186/s12860-021-00402-5

Weismüller TJ, Zhou T, Kalthoff S, Lenzen H, Manns MP, Strassburg CP (2020) Genetic variants of UDP-glucuronosyltransferase 1A genes are associated with disease presentation and outcome in primary sclerosing cholangitis. Liver Int 40(7): 1645–1654. https://doi.org/10.1111/liv.14487

Van Quang H, Vuong NB, Trang BNL, Toan NL, Van Tong H (2024) Association of UGT1A1 gene variants, expression levels, and enzyme concentrations with 2,3,7,8-TCDD exposure in individuals exposed to Agent Orange/Dioxin. Sci Rep 14(1):3315. https://doi.org/10.1038/s41598-024-54004-0

Takahashi H, Maruo Y, Mori A, Iwai M, Sato H, Takeuchi Y (2008) Effect of D256N and Y483D on propofol glucuronidation by human uridine 5'-diphosphate glucuronosyltransferase (UGT1A9). Basic Clin Pharmacol Toxicol 103(2): 131–136. https://doi.org/10.1111/j.1742-7843.2008.00247.x

Dellinger RW, Fang J-L, Chen G, Weinberg R, Lazarus P (2006) Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: decreased glucuronidative activity of the ugt1a10139lys isoform. Drug Metabolism and Disposition 34(6): 943–949. https://doi.org/10.1124/dmd.105.009100

Malfatti MA, Felton JS (2004) Human UDP-glucuronosyltransferase 1A1 is the primary enzyme responsible for the N-glucuronidation of N-hydroxy-PhIP in vitro. Chem Res Toxicol 17(8): 1137–1144. https://doi.org/10.1021/tx049898m

Cheng Z, Radominska-Pandya A, Tephly TR (1998) Cloning and expression of human UDP-glucuronosyltransferase (UGT) 1A8. Arch Biochem Biophys 356(2): 301–305. https://doi.org/10.1006/abbi.1998.0781

Tourancheau A, Margaillan G, Rouleau M, Gilbert I, Villeneuve L, Lévesque E, Droit A, Guillemette C (2016) Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing. Pharmacogenomics J 16(1): 60–70. https://doi.org/10.1038/tpj.2015.20

Begas E, Tsioutsiouliti A, Kouvaras E, Haroutounian SA, Kasiotis KM, Kouretas D, Asprodini E (2017) Effects of peppermint tea consumption on the activities of CYP1A2, CYP2A6, Xanthine Oxidase, N-acetyltranferase-2 and UDP-glucuronosyltransferases-1A1/1A6 in healthy volunteers. Food Chem Toxicol 100: 80–89. https://doi.org/10.1016/j.fct.2016.12.021

Roco A, Lavanderos A, Cayún JP, Acevedo C, Celedón C, Rubilar JC, Sandoval C, Cerpa L, García-Martín E, Agúndez JA, Esguevillas G, Amo G, Canepa A, Cerda B, Peña K, Cáceres DD, Varela NM, Quiñones LA (2019) The role of phase I and II genetic polymorphisms, smoking, alcohol and cancer family history, in the risk of developing testicular cancer. Pharmacogenet Genomics 29(7): 159–166. https://doi.org/10.1097/FPC.0000000000000379

Wang X, Wang Z, Wang Z, Chen X, Yin H, Jiang L, Cao J, Liu Y (2021) Inhibition of human UDP-glucuronosyltransferase enzyme by belinostat: Implications for drug-drug interactions. Toxicol Lett 338: 51–57. https://doi.org/10.1016/j.toxlet.2020.12.001

Sakamoto M, Itoh T, Tukey RH, Fujiwara R (2015) Nicotine regulates the expression of UDP-glucuronosyltransferase (UGT) in humanized UGT1 mouse brain. Drug Metab Pharmacokinet 30(4): 269–275. https://doi.org/10.1016/j.dmpk.2015.04.004

Chen Y, Tang Y, Liu P, Wang J, Wang W, Wang C, Ding L, Xiong A, Yang L, Wang Z (2023) Species difference in toxicokinetics and safety assessment of senecionine N-oxide in a UDP-glucuronosyltransferase 1A4 humanized mouse model. Chem Biol Interact 380:110505. https://doi.org/10.1016/j.cbi.2023.110505

Bock KW, Bock-Hennig BS (2010) UDP-glucuronosyltransferases (UGTs): from purification of Ah-receptor-inducible UGT1A6 to coordinate regulation of subsets of CYPs, UGTs, and ABC transporters by nuclear receptors. Drug Metab Rev 42(1): 6–13. https://doi.org/10.3109/03602530903205492

Nishiyama T, Ohnuma T, Inoue Y, Kishi T, Ogura K, Hiratsuka A (2008) UDP-glucuronosyltransferases 1A6 and 1A10 catalyze reduced menadione glucuronidation. Biochem Biophys Res Commun 371(2): 247–250. https://doi.org/10.1016/j.bbrc.2008.04.040

Bushey RT, Lazarus P (2012) Identification and functional characterization of a novel UDP-glucuronosyltransferase 2A1 splice variant: potential importance in tobacco-related cancer susceptibility. J Pharmacol Exp Ther 343(3): 712–724. https://doi.org/10.1124/jpet.112.198770

Yueh MF, Mellon PL, Tukey RH (2011) Inhibition of human UGT2B7 gene expression in transgenic mice by the constitutive androstane receptor. Mol Pharmacol 79(6): 1053–1060. https://doi.org/10.1124/mol.110.070649

Ehmer U, Vogel A, Schütte JK, Krone B, Manns MP, Strassburg CP (2004) Variation of hepatic glucuronidation: Novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology 39(4): 970–977. https://doi.org/10.1002/hep.20131

Coughlin JL, Thomas PE, Buckley B (2012) Inhibition of genistein glucuronidation by bisphenol A in human and rat liver microsomes. Drug Metab Dispos 40(3): 481–485. https://doi.org/10.1124/dmd.111.042366

Saengtienchai A, Ikenaka Y, Bortey-Sam N, Jermnark U, Mizukawa H, Kawai YK, Nakayama SMM, Ishizuka M (2016) The African hedgehog (Atelerix albiventris): Low phase I and phase II metabolism activities. Comp Biochem Physiol C Toxicol Pharmacol 190: 38–47. https://doi.org/10.1016/j.cbpc.2016.08.005

Saengtienchai A, Ikenaka Y, Kawata M, Kawai Y, Takeda K, Kondo M, Bortey-Sam N, Nakayama SMM, Mizukawa H, Ishizuka M (2018) Comparison of xenobiotic metabolism in phase I oxidation and phase II conjugation between rats and bird species. Comp Biochem Physiol C Toxicol Pharmacol 214: 28–35. https://doi.org/10.1016/j.cbpc.2018.08.007

Al-Yazeedi T, Muhammad A, Irving H, Ahn SJ, Hearn J, Wondji CS (2024) Overexpression and nonsynonymous mutations of UDP-glycosyltransferases are potentially associated with pyrethroid resistance in Anopheles funestus. Genomics 116(2):110798. https://doi.org/10.1016/j.ygeno.2024.110798

Wang H, Song J, Hunt BJ, Zuo K, Zhou H, Hayward A, Li B, Xiao Y, Geng X, Bass C, Zhou S (2024) UDP-glycosyltransferases act as key determinants of host plant range in generalist and specialist Spodoptera species. Proc Natl Acad Sci USA 121(19):e2402045121. https://doi.org/10.1073/pnas.2402045121

Yang Z, Deng M, Wang W, Xiao T, Peng H, Huang Z, Lu K (2024) Characterization and functional analysis of UDP-glycosyltransferases reveal their contribution to phytochemical flavone tolerance in Spodoptera litura. Int J Biol Macromol 261(Pt1):129745. https://doi.org/10.1016/j.ijbiomac.2024.129745

Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D (2017) Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 11(7):e0005625. https://doi.org/10.1371/journal.pntd.0005625

Pym A, Umina PA, Reidy-Crofts J, Troczka BJ, Matthews A, Gardner J, Hunt BJ, van Rooyen AR, Edwards OR, Bass C (2022) Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae. Insect Biochem Mol Biol 143:103743. https://doi.org/10.1016/j.ibmb.2022.103743

Du T, Fu B, Wei X, Yin C, Yang J, Huang M, Liang J, Gong P, Liu S, Xue H, Hu J, Diao Y, Gui L, Yang X, Zhang Y (2021) Knockdown of UGT352A5 decreases the thiamethoxam resistance in Bemisia tabaci (Hemiptera: Gennadius). Int J Biol Macromol 186: 100–108. https://doi.org/10.1016/j.ijbiomac.2021.07.040

Ma K, Tang Q, Liang P, Li J, Gao X (2021) UDP-Glycosyltransferases from the UGT344 Family Are Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. Insects 16;12(4):356. https://doi.org/10.3390/insects12040356

Du Z, Cao YF, Li SN, Hu CM, Fu ZW, Huang CT, Sun XY, Liu YZ, Yang K, Fang ZZ (2018) Inhibition of UDP-glucuronosyltransferases (UGTs) by phthalate monoesters. Chemosphere 197: 7–13. https://doi.org/10.1016/j.chemosphere.2018.01.010

Gmoshinsky IV, Shipelin VA, Vorozhko IV, Sentsova TB, Soto SKh, Avren'eva LI, Guseva GV, Kravchenko LV, Khotimchenko SA, Tutelyan VA (2016) [Toxicological evaluation of colloidal nano-sized silver stabilized polyvinylpyrrolidone. III. Enzymological, biochemical markers, state of antioxidant defense system]. Vopr Pitan 85(2): 14–23.

Zhang QL, Dong ZX, Luo ZW, Zhang M, Deng XY, Guo J, Wang F, Lin LB (2020) The impact of mercury on the genome-wide transcription profile of zebrafish intestine. J Hazard Mater 389:121842. https://doi.org/10.1016/j.jhazmat.2019.121842

Darwish WS, Ikenaka Y, Nakayama SM, Mizukawa H, Ishizuka M (2016) Constitutive Effects of Lead on Aryl Hydrocarbon Receptor Gene Battery and Protection by β-carotene and Ascorbic Acid in Human HepG2 Cells. J Food Sci 81(1): 275–281. https://doi.org/10.1111/1750-3841.13162

Xu X, Cui Z, Wang S (2018) Joint toxicity on hepatic detoxication enzymes in goldfish (Carassius auratus) exposed to binary mixtures of lead and paraquat. Environ Toxicol Pharmacol 62: 60–68. https://doi.org/10.1016/j.etap.2018.06.005

Fan C, Cui Z, Yang T, Sun L, Cao C (2023) UDP-glucuronosyltransferase is involved in susceptibility of Chironomus kiiensis Tokunaga, 1936 (Diptera: Chironomidae) to insecticides. Ecotoxicol Environ Saf 263:115353. https://doi.org/10.1016/j.ecoenv.2023.115353

Mahboob M, Siddiqui MK (2002) Long-term effects of a novel phosphorothionate (RPR-II) on detoxifying enzymes in brain, lung, and kidney rats. Ecotoxicol Environ Saf 53(3): 355–360. https://doi.org/10.1016/s0147-6513(02)00016-7

Tarja N, Kirsti E, Marja L, Kari E (2003) Thermal and metabolic factors affecting bioaccumulation of triazine herbicides by rainbow trout (Oncorhynchus mykiss). Environ Toxicol 18(4): 219–226. https://doi.org/10.1002/tox.10118

Grant C, Singh KS, Hayward A, Hunt BJ, Troczka BJ, Pym A, Ahn SJ, Zeng B, Gao CF, Leroux A, Daum E, Süess P, Souza D, Elias J, Ffrench-Constant RH, Vontas J, Roditakis E, Bielza P, Zimmer CT, Bass C (2023) Overexpression of the UDP-glycosyltransferase UGT34A23 confers resistance to the diamide insecticide chlorantraniliprole in the tomato leafminer, Tuta absoluta. Insect Biochem Mol Biol 159:103983. https://doi.org/10.1016/j.ibmb.2023.103983

Ishii Y, Miyoshi A, Watanabe R, Tsuruda K, Tsuda M, Yamaguchi-Nagamatsu Y, Yoshisue K, Tanaka M, Maji D, Ohgiya S, Oguri K (2001) Simultaneous expression of Guinea pig UDP-glucuronosyltransferase 2B21 and 2B22 in COS7 cells enhances UDP-glucuronosyltransferase 2B21-catalyzed morphine-6-glucuronide formation. Mol. Pharmacol 60(5): 1040–1048. https://doi.org/10.1124/mol.60.5.1040

Auyeung DJ, Kessler FK, Ritter JK (2003) Mechanism of rat UDP-glucuronosyltransferase 1A6 induction by oltipraz: evidence for a contribution of the Aryl hydrocarbon receptor pathway. Mol Pharmacol 63(1): 119–127. https://doi.org/10.1124/mol.63.1.119

Bandyopadhyay A, Sharma S, Behera D, Singh N (2021) UGT1A1 Gene Polymorphisms in Patients with Small Cell Lung Cancer Treated with Irinotecan-Platinum Doublet Chemotherapy and Their Association with Gastrointestinal Toxicity and Overall Survival. Oncologist 26(8): 701–713. https://doi.org/10.1002/onco.13757

Court MH (2005) Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol 400: 104–116. https://doi.org/10.1016/S0076-6879(05)00007-8

Wang X, Wang Z, Fan X, Yan M, Jiang L, Xia Y, Cao J, Liu Y (2021) Comparison of the drug-drug interactions potential of ibrutinib and acalabrutinib via inhibition of UDP-glucuronosyltransferase. Toxicol Appl Pharmacol 424:115595. https://doi.org/10.1016/j.taap.2021.115595

Wang Z, Wang Z, Wang X, Lv X, Yin H, Fan X, Yan M, Jia Y, Jiang L, Xia Y, Li W, Liu Y (2022) In vitro effects of opicapone on activity of human UDP-glucuronosyltransferases isoforms. Toxicol Lett 367: 3–8. https://doi.org/10.1016/j.toxlet.2022.07.003

Hiura Y, Satsu H, Hamada M, Shimizu M (2014) Analysis of flavonoids regulating the expression of UGT1A1 via xenobiotic receptors in intestinal epithelial cells. Biofactors 40(3): 336–45. https://doi.org/10.1002/biof.1153

Kalthoff S, Strassburg CP (2019) Contribution of human UDP-glucuronosyltransferases to the antioxidant effects of propolis, artichoke and silymarin. Phytomedicine 56: 35–39. https://doi.org/10.1016/j.phymed.2018.08.013

Zhu YD, Guan XQ, Chen J, Peng S, Finel M, Zhao YY, Wang RM, Bi HC, Lei M, Wang DD, Ge GB (2021) Neobavaisoflavone Induces Bilirubin Metabolizing Enzyme UGT1A1 via PPARα and PPARγ. Front Pharmacol 11:628314. https://doi.org/10.3389/fphar.2020.628314

Chou YC, Lin YH, Lin PH, Tung YC, Ho CT, Pan MH (2021) Dietary 5-demethylnobiletin modulates xenobiotic-metabolizing enzymes and ameliorates colon carcinogenesis in benzo[a]pyrene-induced mice. Food Chem Toxicol 155:112380. https://doi.org/10.1016/j.fct.2021.112380

Malfatti MA, Wu RW, Felton JS (2005) The effect of UDP-glucuronosyltransferase 1A1 expression on the mutagenicity and metabolism of the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in CHO cells. Mutat Res 570(2): 205–214. https://doi.org/10.1016/j.mrfmmm.2004.11.007