Аннотация
Большое ядро шва (БЯШ) является ключевой структурой эндогенной антиноцицептивной системы, в регуляции активности которой важную роль играют серотониновые 5-HT1A рецепторы. К реципиентам нисходящих проекций БЯШ относится каудальная вентролатеральная ретикулярная область продолговатого мозга (кВЛРО) ‒ первый супраспинальный центр обработки висцеральных и соматических болевых сигналов. Известно, что кишечная патология вызывает в БЯШ устойчивые функциональные перестройки, ассоциированные с развитием висцеральной и соматической гипералгезий. Предположительно, следствием таких перестроек могут являться изменения в модулирующих влияниях БЯШ на ноцицептивную активность кВЛРО. Однако конкретные нейрональные и молекулярные механизмы, лежащие в основе таких влияний в норме, а также их изменения при патологии остаются неисследованными. Целью наших нейрофизиологических экспериментов на анестезированных взрослых самцах крыс Вистар являлось сравнительное изучение эффектов электростимуляции БЯШ на активность нейронов кВЛРО, вызываемую висцеральным (колоректальное растяжение, КРР) и соматическим (сдавливание хвоста) болевыми стимулами, в норме и после перенесенного кишечного воспаления (колита) с оценкой вклада в эти процессы супраспинальных 5-НТ1А рецепторов при их активации интрацеребровентрикулярным введением буспирона. Показано, что БЯШ способно оказывать тормозное влияние как на неселективные, так и дифференцированные реакции нейронов кВЛРО на разные болевые стимулы, вызывая ослабление возбуждающих и усиление тормозных нейрональных ответов на КРР при подавлении обоих типов реакций на сдавливание хвоста. Действие БЯШ на ноцицептивное возбуждение бульбарных нейронов усиливается после активации супраспинальных 5-НТ1А рецепторов буспироном. Установлено, что в постколитный период тормозные влияния БЯШ на разные популяции бульбарных нейронов существенно ослабевают, свидетельствуя о нарушении антиноцицептивной функции ядра. При этом нивелируется 5-НТ1А рецептор-зависимая компонента его нисходящих влияний. Выявленные изменения могут вносить вклад в супраспинальные механизмы патогенеза поствоспалительной абдоминальной боли и коморбидных ей соматических гипералгезий.
Литература
Chen Q, Heinricher MM (2022) Shifting the Balance: How Top-Down and Bottom-Up Input Modulate Pain via the Rostral Ventromedial Medulla. Front Pain Res (Lausanne) 3:932476. https://doi.org/10.3389/fpain.2022.932476
Martins I, Tavares I (2017) Reticular Formation and Pain: The Past and the Future. Front Neuroanat 11:51. https://doi.org/10.3389/fnana.2017.00051
Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474. https://doi.org/ 10.1016/S0301-0082(02)00009-6
Ossipov MH (2012) The perception and endogenous modulation of pain. Scientifica (Cairo) 2012:561761. https://doi.org/10.6064/2012/561761
Almeida TF, Roizenblatt S, Tufik S (2004) Afferent pain pathways: a neuroanatomical review. Brain Res 1000(1-2):40–56. https://doi.org/10.1016/j.brainres.2003.10.073
Chaouch A, Menetrey D, Binder D, Besson JM (1983) Neurons at the origin of the medial component of the bulbopontine spinoreticular tract in the rat: an anatomical study using horseradish peroxidase retrograde transport. J Comp Neurol 214:309–320. https://doi.org/10.1002/cne.902140308
Chen Q, Roeder Z, Li MH, Zhang Y, Ingram SL, Heinricher MM (2017) Optogenetic evidence for a direct circuit linking nociceptive transmission through the parabrachial complex with pain-modulating neurons of the rostral ventromedial medulla (RVM). eNeuro 4:1–16. https://doi.org/10.1523/ENEURO.0202-17.2017
Liang H, Wang S, Francis R, Whan R, Watson C, Paxinos G (2015) Distribution of raphespinal fibers in the mouse spinal cord. Mol Pain 11:42. https://doi.org/10.1186/s12990-015-0046-x
Aby F, Lorenzo LE, Grivet Z, Bouali-Benazzouz R, Martin H, Valerio S, Whitestone S, Isabel D, Idi W, Bouchatta O, De Deurwaerdere P, Godin AG, Herry C, Fioramonti X, Landry M, De Koninck Y, Fossat P (2022) Switch of serotonergic descending inhibition into facilitation by a spinal chloride imbalance in neuropathic pain. Sci Adv 8(30):eabo0689. https://doi.org/10.1126/sciadv.abo0689
Yang J, Pan YJ, Zhao Y, Qiu PY, Lu L, Li P, Chen F, Yan XQ, Wang DX (2011) Oxytocin in the rat caudate nucleus influences pain modulation. Peptides 32(10):2104–2107. https://doi.org/10.1016/j.peptides.2011.08.021
Phillips S, Cantrill R, Ford D, Mitchell D (1986) Microinjection of dopamine agonists into nucleus raphe magnus affects nociception in rats. Pain 26(2):259–266. https://doi.org/10.1016/0304-3959(86)90080-1
Randich A, Mebane H, DeBerry JJ, Ness TJ (2008) Rostral ventral medulla modulation of the visceromotor reflex evoked by urinary bladder distension in female rats. J Pain 9(10):920–926. https://doi.org/10.1016/j.jpain.2008.05.011
Zhuo M, Gebhart GF (2002) Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology 122(4):1007–1019. https://doi.org/10.1053/gast.2002.32389
Baik EJ, Jeong Y, Nam TS, Kim WK, Paik KS (1995) Mechanism of transmission and modulation of renal pain in cats; effect of nucleus raphe magnus stimulation on renal pain. Yonsei Med J 36(4):348–360. https://doi.org/10.3349/ymj.1995.36.4.348
Jones SL, Light AR (1990) Electrical stimulation in the medullary nucleus raphe magnus inhibits noxious heat-evoked fos protein-like immunoreactivity in the rat lumbar spinal cord. Brain Res 530(2):335–338. https://doi.org/10.1016/0006-8993(90)91306-2
Zhuo M, Sengupta JN, Gebhart GF (2002) Biphasic modulation of spinal visceral nociceptive transmission from the rostroventral medial medulla in the rat. J Neurophysiol 87(5):2225–2236. https://doi.org/10.1152/jn.2002.87.5.2225
Cobos A, Lima D, Almeida A, Tavares I (2003) Brain afferents to the lateral caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat. Neuroscience 120(2):485–498. https://doi.org/10.1016/s0306-4522(03)00209-4
Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407(4):555–582. PMID: 10235645
Almeida A, Leite-Almeida H, Tavares I (2006) Medullary control of nociceptive transmission: Reciprocal dual communication with the spinal cord. Drug Discov Today Dis Mech 3 (3): 305–312. https://doi.org/10.1016/j.ddmec.2006.09.001
Tavares I, Lima D (2007) From neuroanatomy to gene therapy: searching for new ways to manipulate the supraspinal endogenous pain modulatory system. J Anat 211(2): 261–268. https://doi.org/10.1111/j.1469-7580.2007.00759.x
Lyubashina OA, Sivachenko IB, Sokolov AY (2019) Differential responses of neurons in the rat caudal ventrolateral medulla to visceral and somatic noxious stimuli and their alterations in colitis. Brain Res Bull 152:299–310. https://doi.org/10.1016/j.brainresbull.2019.07.030
Pinto-Ribeiro F, Ansah OS, Almeida A, Pertovaara A (2011) Response properties of nociceptive neurons in the caudal ventrolateral medulla (CVLM) in monoarthritic and healthy control rats: Modulation of responses by the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull 86 (1–2):82–90. https://doi.org/10.1016/j.brainresbull.2011.06.014
Heinricher MM (2016) Pain Modulation and the Transition from Acute to Chronic Pain. Adv Exp Med Biol 904:105–115. https://doi.org/10.1007/978-94-017-7537-3_8
Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19(4):334–344. https://doi.org/ 10.1016/j.bbi.2004.09.002
Wan J, Ding Y, Tahir AH, Shah MK, Janyaro H, Li X, Zhong J, Vodyanoy V, Ding M (2017) Electroacupuncture attenuates visceral hypersensitivity by inhibiting JAK2/STAT3 signaling pathway in the descending pain modulation system. Front Neurosci 11:644. https://doi.org/10.3389/fnins.2017.00644
Sanoja R, Tortorici V, Fernandez C, Price TJ, Cervero F (2010) Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia. Eur J Pain 14(2):120.e1–e9. https://doi.org/10.1016/j.ejpain.2009.04.006
Sushkevich BM, Sivachenko IB, Lyubashina OA (2023) Postcolitis alterations in nociceptive properties of neurons in the rat nucleus raphe magnus and dorsal raphe nucleus. J Evol Biochem Phys 59(4):1057–1076. https://doi.org/10.1134/S0022093023040051
Lyubashina OA, Sivachenko IB, Sushkevich BM, Busygina II (2023) Opposing effects of 5-HT1A receptor agonist buspirone on supraspinal abdominal pain transmission in normal and visceral hypersensitive rats. J Neurosci Res 101(10):1555‒1571. https://doi.org/10.1002/jnr.25222
Lyubashina OA, Sivachenko IB, Busygina II, Panteleev SS (2018) Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 142:183–196. https://doi.org/10.1016/j.brainresbull.2018.07.013
Munawar N, Bitar MS, Masocha W (2023) Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain Int J Mol Sci 24(18):14334. https://doi.org/10.3390/ijms241814334
Zhang Y, Gao X, Yang ZL, Huang YL, Wu GC (2000) Expression of 5-HT(1A) receptor mRNA in rat nucleus raphe magnus neurons after peripheral inflammation. Brain Res 887(2):465–468. https://doi.org/10.1016/s0006-8993(00)03037-7
Blier P, Piñeyro G, el Mansari M, Bergeron R, de Montigny C (1998) Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci 861:204–216. https://doi.org/10.1111/j.1749-6632.1998.tb10192.x
Lemos JC, Pan YZ, Ma X, Lamy C, Akanwa AC, Beck SG (2006) Selective 5-HT receptor inhibition of glutamatergic and GABAergic synaptic activity in the rat dorsal and median raphe. Eur J Neurosci 24(12):3415–3430. https://doi.org/10.1111/j.1460-9568.2006.05222.x
Bardin L (2011) The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 22(5-6):390–404. https://doi.org/10.1097/FBP.0b013e328349aae4
Wei H, Pertovaara A (2006) 5-HT(1A) receptors in endogenous regulation of neuropathic hypersensitivity in the rat. Eur J Pharmacol 535(1-3):157–165. https://doi.org/10.1016/j.ejphar.2006.02.019
Haleem DJ (2018) Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain. Pharmacol Res 134:212–219. https://doi.org/10.1016/j.phrs.2018.06.030
Zemlan FP, Murphy AZ, Behbehani MM (1994) 5-HT1A receptors mediate the effect of the bulbospinal serotonin system on spinal dorsal horn nociceptive neurons. Pharmacology 48(1):1–10. https://doi.org/10.1159/000139156
Zhang YQ, Gao X, Ji GC, Huang YL, Wu GC, Zhao ZQ (2002) Expression of 5-HT1A receptor mRNA in rat lumbar spinal dorsal horn neurons after peripheral inflammation. Pain 98(3):287–295. https://doi.org/10.1016/S0304-3959(02)00026-X
Panteleev SS, Sivachenko IB, Lyubashina OA (2018) The central effects of buspirone on abdominal pain in rats. Neurogastroenterol Motil 30(11):e13431. https://doi.org/10.1111/nmo.13431
Helke CJ, Capuano S, Tran N, Zhuo H (1997) Immunocytochemical studies of the 5-HT(1A) receptor in ventral medullary neurons that project to the intermediolateral cell column and contain serotonin or tyrosine hydroxylase immunoreactivity. J Comp Neurol 379(2):261–270. PMID: 9050789.
Liu Q, Wong-Riley MT (2010) Postnatal changes in the expressions of serotonin 1A, 1B, and 2A receptors in ten brain stem nuclei of the rat: implication for a sensitive period. Neuroscience 165(1):61–78. https://doi.org/10.1016/j.neuroscience.2009.09.078
Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96(3):795–803.
Lyubashina OA, Sivachenko IB, Mikhalkin AA (2022) Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis. Brain Res Bull 182:12–25. https://doi.org/10.1016/j.brainresbull.2022.02.002
Lyubashina OA, Sivachenko IB, Busygina II (2021) Amygdalofugal Modulation of Visceral Nociceptive Transmission in the Rat Caudal Ventrolateral Medulla under Normal Conditions and Intestinal Inflammation. J Evol Biochem Phys 57: 1150–1162. https://doi.org/10.1134/S0022093021050161
Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. 4th ed London Academic Press.
Aimone LD, Jones SL, Gebhart GF (1987) Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain 31(1):123–136. https://doi.org/10.1016/0304-3959(87)90012-1
Paul D, Phillips AG (1986) Selective effects of pirenperone on analgesia produced by morphine or electrical stimulation at sites in the nucleus raphe magnus and periaqueductal gray. Psychopharmacology 88(2):172–176. https://doi.org/10.1007/BF00652235
Sun JH, Ruan XJ, Wang LN, Liang S, Li XP (2015) Study on the Antinociceptive Effects of Herba Epimedium in Mice. Evid Based Complement Alternat Med 2015:483942. https://doi.org/10.1155/2015/483942
Ness TJ, Follett KA, Piper J, Dirks BA (1998) Characterization of neurons in the area of the medullary lateral reticular nucleus responsive to noxious visceral and cutaneous stimuli. Brain Res 802(1–2):163–174. https://doi.org/10.1016/s0006-8993(98)00608-8
Luz LL, Fernandes EC, Sivado M, Kokai E, Szucs P, Safronov BV (2015) Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in lamina I: a substrate for referred pain. Pain 156(10):2042–2051. https://doi.org/10.1097/j.pain.0000000000000267
Qin C, Farber JP, Linderoth B, Shahid A, Foreman RD (2008) Neuromodulation of thoracic intraspinal visceroreceptive transmission by electrical stimulation of spinal dorsal column and somatic afferents in rats. J Pain 9(1):71–78. https://doi.org/10.1016/j.jpain.2007.08.007
Nguyen E, Grajales-Reyes JG, Gereau RW 4th, Ross SE (2023) Cell type-specific dissection of sensory pathways involved in descending modulation. Trends Neurosci 46(7):539–550. https://doi.org/10.1016/j.tins.2023.04.002
Peng B, Jiao Y, Zhang Y, Li S, Chen S, Xu S, Gao P, Fan Y, Yu W (2023) Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters. Front Pharmacol 14:1159753. https://doi.org/10.3389/fphar.2023.1159753
Zhang Y, Zhao S, Rodriguez E, Takatoh J, Han BX, Zhou X, Wang F (2015) Identifying local and descending inputs for primary sensory neurons. J Clin Invest 125(10):3782–3794. https://doi.org/10.1172/JCI81156
Otsu Y, Aubrey KR (2022) Kappa opioids inhibit the GABA/glycine terminals of rostral ventromedial medulla projections in the superficial dorsal horn of the spinal cord. J Physiol 600(18):4187–4205. https://doi.org/10.1113/JP283021
Lyubashina OA, Sivachenko IB (2017) The 5-HT4 receptor-mediated inhibition of visceral nociceptive neurons in the rat caudal ventrolateral medulla. Neuroscience 359:277–288. https://doi.org/10.1016/j.neuroscience.2017.07.039
Pinto M, Sousa M, Lima D, Tavares I (2008) Participation of mu-opioid, GABA(B), and NK1 receptors of major pain control medullary areas in pathways targeting the rat spinal cord: implications for descending modulation of nociceptive transmission. J Comp Neurol 510(2):175–187. https://doi.org/10.1002/cne.21793
Haleem DJ (2019) Targeting Serotonin1A Receptors for Treating Chronic Pain and Depression. Curr Neuropharmacol 17(12):1098‒1108. https://doi.org/10.2174/1570159X17666190811161807
Bagdy E, Kiraly I, Harsing LG Jr (2000) Reciprocal innervation between serotonergic and GABAergic neurons in raphe nuclei of the rat. Neurochem Res 25(11):1465‒1473. https://doi.org/10.1023/a:1007672008297
Inyushkin AN, Merkulova NA, Orlova AO, Inyushkina EM (2010) Local GABAergic modulation of the activity of serotoninergic neurons in the nucleus raphe magnus. Neurosci Behav Physiol 40(8):885‒893. https://doi.org/10.1007/s11055-010-9337-x
Loane C, Politis M (2012) Buspirone: what is it all about? Brain Res 1461:111–118. https://doi.org/10.1016/j.brainres.2012.04.032
de Oliveira R, de Oliveira RC, Falconi-Sobrinho LL, da Silva Soares R Jr, Coimbra NC (2017) 5-Hydroxytryptamine2A/2C receptors of nucleus raphe magnus and gigantocellularis/paragigantocellularis pars α reticular nuclei modulate the unconditioned fear-induced antinociception evoked by electrical stimulation of deep layers of the superior colliculus and dorsal periaqueductal grey matter. Behav Brain Res 316:294–304. https://doi.org/10.1016/j.bbr.2016.09.016
Ferrari LF, Pei J, Zickella M, Rey C, Zickella J, Ramirez A, Taylor NE (2021) D2 Receptors in the Periaqueductal Gray/Dorsal Raphe Modulate Peripheral Inflammatory Hyperalgesia via the Rostral Ventral Medulla. Neuroscience 463:159–173. https://doi.org/10.1016/j.neuroscience.2021.03.035
Li C, Sugam JA, Lowery-Gionta EG, McElligott ZA, McCall NM, Lopez AJ, McKlveen JM, Pleil KE, Kash TL (2016) Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain. Neuropsychopharmacology 41(8):2122–2132. https://doi.org/10.1038/npp.2016.12
Wang XQ, Mokhtari T, Zeng YX, Yue LP, Hu L (2021) The Distinct Functions of Dopaminergic Receptors on Pain Modulation: A Narrative Review. Neural Plast 2021:6682275. https://doi.org/10.1155/2021/6682275
Costa-Pereira JT, Serrão P, Martins I, Tavares I (2020) Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy-induced neuropathy: The role of spinal 5-HT3 receptors. Eur J Neurosci 51(8):1756–1769. https://doi.org/10.1111/ejn.14614
Wei F, Dubner R, Zou S, Ren K, Bai G, Wei D, Guo W (2010) Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci 30(25):8624–8636. https://doi.org/10.1523/JNEUROSCI.5389-09.2010
Li MH, Suchland KL, Ingram SL (2015) GABAergic transmission and enhanced modulation by opioids and endocannabinoids in adult rat rostral ventromedial medulla. J Physiol 593(1):217–230. https://doi.org/10.1113/jphysiol.2014.275701