Аннотация
Данная работа фокусируется на половых различиях экспрессии гена пролактина (Prl1) в мозге и его рецепторов (PrlRa и PrlRb) в осморегуляторных органах (мозге, почках, жабрах и кишечнике) самок и самцов трёхиглой колюшки (Gasterosteus aculeatus L.) в ходе пресноводной адаптации. Особи морской морфы колюшки были отловлены в нерестовый период и в течение 72 ч адаптированы к условиям пресной воды. После этого экспрессия генов интереса была оценена с использованием метода РТ-ПЦР. За счёт повышения экспрессии гена Prl1 в мозге самок в условиях пресноводной адаптации проявлялись половые различия, отсутствовавшие в условиях морской воды. Экспрессия гена PrlRa в мозге была ниже у самок по сравнению с самцами в условиях морской воды, однако после перехода в пресную воду достоверно повышалась, и после пресноводной адаптации этот параметр был сопоставим у особей обоих полов. Экспрессия гена PrlRb в мозге самок достоверно повышалась в ходе пресноводной адаптации. В почках экспрессия гена PrlRa не различалась у самок и самцов в контрольной группе, и снижалась у особей обоих полов в ходе адаптации к пресной воде. Экспрессия гена PrlRb в почках не зависела от пола особей контрольной группы, а после адаптации к пресной воде достоверно повышалась у самок, но снижалась у самцов, таким образом приводя к появлению половых различий после пресноводной адаптации. В жабрах экспрессия генов PrlRa и PrlRb не зависела ни от пола особей, ни от солености среды содержания. Экспрессия гена PrlRa в кишечнике не зависела ни от пола особей, ни от солёности среды. Экспрессия гена PrlRb в кишечнике не зависела от пола и после пресноводной адаптации снижалась у самок и самцов. Таким образом, зависимость осморегуляторной функции пролактина от пола колюшек проявляется в половых различиях экспрессии самого гена пролактина в мозге и в сенсибилизации мозга и осморегуляторных органов к нему в ходе пресноводной адаптации.
Литература
Grattan DR, Kokay IC (2008) Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 20: 752–763. https://doi.org/10.1111/j.1365-2826.2008.01736.x
Bernard V, Young J, Binart N (2019) Prolactin - a pleiotropic factor in health and disease. Nat Rev Endocrinol 15: 356–365. https://doi.org/10.1038/s41574-019-0194-6
Yuan M, Jia Q, Wang T, Lu Q, Tang L, Wang Y, Lu W (2017) Dynamic responses of prolactin, growth hormone and their receptors to hyposmotic acclimation in the olive flounder Paralichthys olivaceus. Gen Comp Endocrinol 254: 8–13. https://doi.org/10.1016/j.ygcen.2017.09.005
Moorman BP, Inokuchi M, Yamaguchi Y, Lerner DT, Grau EG, Seale AP (2014) The osmoregulatory effects of rearing Mozambique tilapia in a tidally changing salinity. Gen Comp Endocrinol 207: 94–102. https://doi.org/10.1016/j.ygcen.2014.03.013
Vargas-Chacoff L, Dann F, Paschke K, Oyarzún-Salazar R, Nualart D, Martínez D, Wilson JM, Guerreiro PM, Navarro JM (2021) Freshening effect on the osmotic response of the Antarctic spiny plunderfish Harpagifer antarcticus. J Fish Biol 98: 1558–1571. https://doi.org/10.1111/jfb.14676
Zahangir MM, Matsubara H, Ogiso S, Suzuki N, Ueda H, Ando H (2021) Expression dynamics of the genes for the hypothalamo-pituitary-gonadal axis in tiger puffer (Takifugu rubripes) at different reproductive stages. Gen Comp Endocrinol 301: 113660. https://doi.org/10.1016/j.ygcen.2020.113660
Wootton RJ (1984) A functional biology of sticklebacks. Univ of California Press
Slijkhuis H, de Ruiter AJ, Baggerman B, Wendelaar Bonga SE (1984) Parental fanning behavior and prolactin cell activity in the male three-spined stickleback Gasterosteus aculeatus L. Gen Comp Endocrinol 54: 297–307. https://doi.org/10.1016/0016-6480(84)90184-9
de Ruiter AJ, Wendelaar Bonga SE, Slijkhuis H, Baggerman B (1986) The effect of prolactin on fanning behavior in the male three-spined stickleback, Gasterosteus aculeatus L. Gen Comp Endocrinol 64: 273–283. https://doi.org/10.1016/0016-6480(86)90014-6
Páll MK, Mayer I, Borg B (2002) Androgen and behavior in the male three-spined stickleback, Gasterosteus aculeatus. II. Castration and 11-ketoandrostenedione effects on courtship and parental care during the nesting cycle. Horm Behav 42: 337–344. https://doi.org/10.1006/hbeh.2002.1820
Lam TJ, Leatherland JF (1969) Effects of prolactin on the glomerulus of the marine threespine stickleback, Gasterosteus aculeatus L., form trachurus, after transfer from seawater to fresh water, during the late autumn and early winter. Can J Zool 47: 245–250.
Benjamin M (1980) The Response of Prolactin, ACTH, and Growth Hormone Cells in the Pituitary Gland of the Three-Spined Stickleback: Gasterosteus aculeatus L. form leiurus, to Increased Environmental Salinities. Acta Zool 61: 1–7.
Pavlova NS, Gizatulina AR, Neretina T V, Smirnova O V (2022) Expression of Opsin Genes in the Retina of Female and Male Three-Spined Sticklebacks Gasterosteus aculeatus L.: Effect of Freshwater Adaptation and Prolactin Administration. Biochem 87: 215–224.
Pavlova NS, Neretina T V, Smirnova O V (2020) Dynamics of prolactin axis genes in the brain of male and female three-spined stickleback Gasterosteus aculeatus (Gasterostaidae) during short-term freshwater adaptation. J Ichthyol 60: 299–304.
Mohammed-Geba K, González AA, Suárez RA, Galal-Khallaf A, Martos-Sitcha JA, Ibrahim HM, Mart’inez-Rodr’iguez G, Mancera JM (2017) Molecular performance of Prl and Gh/Igf1 axis in the Mediterranean meager, Argyrosomus regius, acclimated to different rearing salinities. Fish Physiol Biochem 43: 203–216.
Shu Y, Lou Q, Dai Z, Dai X, He J, Hu W, Yin Z (2016) The basal function of teleost prolactin as a key regulator on ion uptake identified with zebrafish knockout models. Sci Rep 6: 1–12.
Watanabe S, Itoh K, Kaneko T (2016) Prolactin and cortisol mediate the maintenance of hyperosmoregulatory ionocytes in gills of Mozambique tilapia: exploring with an improved gill incubation system. Gen Comp Endocrinol 232: 151–159.
Liu Z, Ma A, Zhang J, Yang S, Cui W, Xia D, Qu J (2020) Cloning and molecular characterization of PRL and PRLR from turbot (Scophthalmus maximus) and their expressions in response to short-term and long-term low salt stress. Fish Physiol Biochem 46: 501–517. https://doi.org/10.1007/s10695-019-00699-2
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M (2020) Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 14: 621. https://doi.org/10.3389/FNINS.2020.00621
Kavarthapu R, Dufau ML (2022) Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness. Front Endocrinol (Lausanne) 13: 949396.
Hewage TMG, Woo DW, Celino-Brady FT, Seale AP (2023) Temperature modulates the osmosensitivity of tilapia prolactin cells. Sci Rep 13: 20217. https://doi.org/10.1038/s41598-023-47044-5
Leondires MP, Hu ZZ, Dong J, Tsai-Morris CH, Dufau ML (2002) Estradiol stimulates expression of two human prolactin receptor isoforms with alternative exons-1 in T47D breast cancer cells. J Steroid Biochem Mol Biol 82: 263–268. https://doi.org/10.1016/s0960-0760(02)00184-x
Banks CM, Trott JF, Hovey RC (2024) The prolactin receptor: A cross-species comparison of gene structure, transcriptional regulation, tissue-specificity, and genetic variation. J Neuroendocrinol e13385.
Zeng J, Li J, Yang K, Yan J, Xu T, Lu W (2022) Differential branchial response of low salinity challenge induced prolactin in active and passive coping style olive flounder. Front Physiol 13: 913233.
Yamaguchi Y, Breves JP, Haws MC, Lerner DT, Grau EG, Seale AP (2018) Acute salinity tolerance and the control of two prolactins and their receptors in the Nile tilapia (Oreochromis niloticus) and Mozambique tilapia (O. mossambicus): A comparative study. Gen Comp Endocrinol 257: 168–176.
Seale AP, Pavlosky KK, Celino-Brady FT, Yamaguchi Y, Breves JP, Lerner DT (2019) Systemic versus tissue-level prolactin signaling in a teleost during a tidal cycle. J Comp Physiol B, Biochem Syst Environ Physiol 189: 581–594. https://doi.org/10.1007/s00360-019-01233-9
Nagarajan G, Aruna A, Chang Y-M, Alkhamis YA, Mathew RT, Chang C-F (2023) Effects of Osmotic Stress on the mRNA Expression of prl, prlr, gr, gh, and ghr in the Pituitary and Osmoregulatory Organs of Black Porgy, Acanthopagrus schlegelii. Int J Mol Sci 24(6): 5318. https://doi.org/10.3390/ijms24065318
Seale AP, Stagg JJ, Yamaguchi Y, Breves JP, Soma S, Watanabe S, Kaneko T, Cnaani A, Harpaz S, Lerner DT, Grau EG (2014) Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine. Gen Comp Endocrinol 206: 146–154. https://doi.org/10.1016/j.ygcen.2014.07.020
Takahashi H, Prunet P, Kitahashi T, Kajimura S, Hirano T, Grau EG, Sakamoto T (2007) Prolactin receptor and proliferating/apoptotic cells in esophagus of the Mozambique tilapia (Oreochromis mossambicus) in fresh water and in seawater. Gen Comp Endocrinol 152: 326–331.
Manzon LA (2002) The role of prolactin in fish osmoregulation: a review. Gen Comp Endocrinol 125: 291–310.
Kent M, Bell AM (2018) Changes in behavior and brain immediate early gene expression in male threespined sticklebacks as they become fathers. Horm Behav 97: 102–111.
Blume A, Torner L, Liu Y, Subburaju S, Aguilera G, Neumann ID (2009) Prolactin induces Egr-1 gene expression in cultured hypothalamic cells and in the rat hypothalamus. Brain Res 1302: 34–41.
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M (2020) Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 14: 621. https://doi.org/10.3389/fnins.2020.00621
Saha I, Chakraborty A, Das S (2021) Prolactin Influences Different Aspects of Fish Biology. Asian J Biol Life Sci 10: 51.
Singh SP, Singh TP (1981) Effect of sex steroids on pituitary and serum prolactin level in ovariectomized catfish, Clarias batrachus. In: Annales D’endocrinologie. pp 57–62.
Zhang Y, Long Z, Li Y, Yi S, Shi Y, Ma X, Huang W, Lu D, Zhu P, Liu X, Meng Z, Huang X, Cheng CHK, Lin H (2010) The second prolactin receptor in Nile tilapia (Oreochromis niloticus): molecular characterization, tissue distribution and gene expression. Fish Physiol Biochem 36: 283–295. https://doi.org/10.1007/s10695-009-9355-1
Cunha AAP, Partridge CG, Knapp R, Neff BD (2019) Androgen and prolactin manipulation induces changes in aggressive and nurturing behavior in a fish with male parental care. Horm Behav 116: 104582.