Аннотация
Дыхание гипербарическим кислородом (ГБО2) вызывает генерализованные тонические и клонические судороги, механизмы возникновения которых недостаточно изучены. Целью настоящей работы являлось исследование механизмов вовлечения моноаминоксидазы (МАО) в развитие гипербарических кислородных судорог. У крыс, находящихся в барокамере под давлением кислорода 5 АТА, анализировали судорожные реакции после введения пиразидола – ингибитора МАО-А и паргилина – ингибитора МАО-Б. Исследования показали снижение активности МАО-изоформ в ГБО2, а также задержку развития судорог у животных при ингибировании МАО-А и МАО-Б. Уровень ГАМК в мозге понижался при ГБО2, а ингибирование МАО-Б с помощью паргилина предотвращало снижение содержания тормозного медиатора. Полученные результаты свидетельствуют о том, что МАО-изоформы играют важную роль в регулировании эпилептогенеза при экстремальной гипероксии. Гипербарический кислород, ингибируя каталитическую активность МАО путем трансформации ее молекулярной структуры, приводит к нарушению регуляции обмена моноаминовых нейротрансмиттеров и понижению уровня ГАМК в мозге, что в совокупности ведет к дисбалансу процессов возбуждения/торможения в ЦНС, лежащему в основе патогенеза кислородной эпилепсии.
Литература
Зальцман ГЛ (1968) Стадии развития кислородной эпилепсии и функциональное состояние нервной системы. В кн. Гипербарические эпилепсия и наркоз. Л. Наука. С. 129–136. [Zal’tsman GL (1968) Stages of formation of oxygen-induced epilepsy and the functional state of the nervous system. In: Hyperbaric Epilepsy and Narcosis: Neurophysiological Studies (in Russion with English abstracts). Zal’tsman GL (ed.). Nauka. Leningrad, pp. 129–136.]
Bean JW, Zee D, Thom B (1966) Pulmonary changes with convulsions induced by drugs and oxygen at high pressure. J Appl Physiol 21(3): 865–872. https://doi.org/10.1152/jappl.1966.21.3.865
Dean JB, Mulkey DK, Henderson RA 3rd, Potter SJ, Putnam RW (2004) Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons. J Appl Physiol (1985) 96(2): 784–791. https://doi.org/10.1152/japplphysiol.00892.2003
Gasier HG, Demchenko IT, Zhilyaev SY, Moskvin AN, Krivchenko AI, Piantadosi CA (2018) Adrenoceptor blockade modifies regional cerebral blood flow responses to hyperbaric hyperoxia: protection against CNS oxygen toxicity. J Appl Physiol (1985) 125(4): 1296–1304. https://doi.org/10.1152/japplphysiol.00540.2018
Platonova TF, Alekseeva OS, Nikitina ER, Demchenko IT (2020) Blockade of Brain Adrenoreceptors Delays Seizure Development during Hyperbaric Oxygen Breathing. J Evol Biochem Phys 56(5): 425–433. https://doi.org/10.1134/S0022093020050051
Glover V, Gibb C, Sandler M (1986) The role of MAO in MPTP toxicity. J Neural Transm Suppl 20: 65–76.
Knoll J (1978) On the dual nature of monoamine oxidase. Horiz Biochem Biophys 5: 37–64.
Magyar K (1993) Pharmacology of monoamine oxidase type B inhibitors. In: Inhibitors of Monoamine Oxidase B. Pharmacology and Clinical Use in Neurodegenerative Disorders (ed. Szelenyi I) Birkhauser, Basel 125–143.
Yusa T, Beckman JS, Crapo JD, Freeman BA (1987) Hyperoxia increases H2O2 production by brain in vivo. J Appl Physiol (1985) 63(1): 353–358. https://doi.org/10.1152/jappl.1987.63.1.353.PMID: 362413
Demchenko IT, Zhilyaev SY, Moskvin AN, Piantadosi CA, Allen BW (2010) Autonomic activation links CNS oxygen toxicity to acute cardiogenic pulmonary injury. Am J Physiol Lung Cell Mol Physiol 300(1): L102–111. https://doi.org/10.1152/ajplung.00178.2010
Горошинская ИА, Кричевская АА, Шугалей ВС, Шерстнев КБ, Баламирзоева РМ (1986) Активность моноаминоксидазы и уровень гамма-аминомасляной кислоты при гипероксии, влияние хлоргилина. Вопросы медицинской химии 32(2): 76–79. [Goroshinskaia IA, Krichevskaia AA, Shugaleĭ VS, Sherstnev KB, Balamirzoeva RM (1986) Monoamine oxidase activity and gamma-aminobutyric acid levels in hyperoxia. The effect of clorgyline. Vopr Med Khim 32(2): 76–79.]
Medvedev AE, Rajgorodskaya DI, Gorkin VZ, Fedotova IB, Semiokhina AF (1992) The role of lipid peroxidation in the possible involvement of membrane-bound monoamine oxidases in gamma-aminobutyric acid and glucosamine deamination in rat brain. Focus on chemical pathogenesis of experimental audiogenic epilepsy. Mol Chem Neuropathol 16(1-2): 187–201. https://doi.org/10.1007/BF03159969
Bruhwyler J, Liégeois JF (1997) Pirlindole: a selective reversible inhibitor of monoamine oxidase A. A review of its preclinical properties. Géczy J Pharmacol Res 36(1): 23–33. https://doi.org/10.1006/phrs.1997.0196
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1): 265–275.
Северина ИС (1979) О возможном механизме избирательного торможения хлоргилином и депренилом активности митохондриальной моноаминоксидазы печени крыс. Биохимия 44(2): 195–207. [Severina IS (1979) Possible mechanism of selective inhibition of rat liver mitochondrial monoamine oxidase by chlorgiline and deprenyl. Biokhimiia. 44(2): 195–207. (In Russ)].
Стрелков РБ (1967) К модификации методики изотермической перегонки аммиака. Лабораторное дело. 1: 17–19. [Strelkov RB (1967) On the modification of the method of isothermic sublimation of ammonia. Lab Delo. 1: 17–19. (In Russ)].
Zhang J, Piantadosi CA (1991) Prevention of H2O2 generation by monoamine oxidase protects against CNS O2 toxicity. J Appl Physiol (1985) 71(3): 1057–1061. https://doi.org/10.1152/jappl.1991.71.3.1057
Paxinos G, Watson C (2005) The Rat Brain in Stereotaxic Coordinates. Boston, MA: Elsevier.
Demchenko IT, Luchakov YuI, Moskvin AN, Gutsaeva DR, Allen BW, Thalmann ED, Piantadosi CA (2005) Cerebral blood flow and brain oxygenation in rats breathing oxygen under pressure. J Cereb Blood Flow Metab 25(10): 1288–1300. https://doi.org/10.1038/sj.jcbfm.9600110
Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3): 281–294. https://doi.org/10.1016/0013-4694(72)90177-0
Faiman MD, Nolan RJ, Baxter CF, Dodd DE (1977) Brain gamma-aminobutyric acid, glutamic acid decarboxylase, glutamate, and ammonia in mice during hyperbaric oxygenation. J Neurochem 28(4): 861–865. https://doi.org/10.1111/j.1471-4159.1977.tb10640.x
Piantadosi CA, Tatro LG (1990) Regional H2O2 concentration in rat brain after hyperoxic convulsions. J Appl Physiol (1985) 69(5): 1761–1766. https://doi.org/10.1152/jappl.1990.69.5.1761
D'Agostino DP, Putnam RW, Dean JB (2007) Superoxide (•O2−) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen. J Neurophysiol 98(2): 1030–1041. https://doi.org/10.1152/jn.01003.2006
Ciarlone GE, Dean JB (2016) Normobaric hyperoxia stimulates superoxide and nitric oxide production in the caudal solitary complex of rat brain slices. Am J Physiol Cell Physiol 311(6): C1014–C1026. https://doi.org/10.1152/ajpcell.00160.2016
Oury TD, Ho YS, Piantadosi CA, Crapo JD (1992) Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci U S A 89(20): 9715–9719. https://doi.org/10.1073/pnas.89.20.9715
Arai M, Takata K, Takeda Y, Mizobuchi S, Morita K (2011) The excitement of multiple noradrenergic cell groups in the rat brain related to hyperbaric oxygen seizure. Acta Med Okayama 65(3): 163–168. https://doi.org/10.18926/AMO/46627. PMID: 21709713.
Fitzgerald PJ (2010) Is elevated norepinephrine an etiological factor in some cases of epilepsy? Seizure 19(6): 311–318. https://doi.org/10.1016/j.seizure.2010.04.011
Finberg JP (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143(2): 133–152. https://doi.org/10.1016/j.pharmthera.2014.02.010
Demchenko IT, Zhilyaev SY, Moskvin AN, Piantadosi CA, Allen BW (2011) Autonomic activation links CNS oxygen toxicity to acute cardiogenic pulmonary injury. Am J Physiol Lung Cell Mol Physiol 300(1): L102–111. https://doi.org/10.1152/ajplung.00178.2010.
Adachi YU, Watanabe K, Hideyuki Higuchi H, Tetsuo Satoh T, Vizi ES (2001) Oxygen inhalation enhances striatal dopamine metabolism and monoamineoxidase enzyme inhibition prevents it: a microdialysis study. Eur J Pharmacol 422(1-3): 61–68. https://doi.org/10.1016/s0014-2999(01)01074-3
Cho HU, Kim S, Sim J, Yang S, An H, Nam MH, Jang DP, Lee CJ (2021) Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Exp Mol Med 53(7): 1148–1158. https://doi.org/10.1038/s12276-021-00646-3
Pacia SV, Doyle WK, Broderick PA (2001) Biogenic amines in the human neocortex in patients with neocortical and mesial temporal lobe epilepsy: identification with in situ microvoltammetry. Brain Res 899(1-2): 106–111. https://doi.org/10.1016/s0006-8993(01)02214-4.
Lavoute C, Weiss M, Risso JJ, Rostain JC (2014) Alteration of striatal dopamine levels under various partial pressure of oxygen in pre-convulsive and convulsive phases in freely-moving rats. Neurochem Res 39(2): 287–294. https://doi.org/10.1007/s11064-013-1220-z
Gorkin VZ (1985) Studies on the nature and specific inhibition of monoamine oxidases. In Neuropharmacology 85 (eds. Kelemen K, Magyar K, Vizi ES). Akademiai Kiodo, Budapest 9–14.
Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 287(7): 4411–4418. https://doi.org/10.1074/jbc.R111.285742