Аннотация
Заболевания центральной нервной системы занимают ведущее место, наряду с сердечно-сосудистыми и онкологическими, и доля пациентов, страдающих болезнями нервной системы, увеличивается по мере старения населения. В эту группу входят острые состояния, такие, как ишемический инсульт, и хронические многофакторные заболевания - болезни Альцгеймера и Паркинсона, эпилепсия и др. Разработка специфических методов их лечения затруднена, а эффективность имеющихся препаратов невысока. В основе практически всех заболеваний головного мозга лежат общие механизмы, такие как окислительные стресс, воспаление и гибель нейронов. Чаще всего клетки гибнут путём апоптоза из-за нарушения баланса между проапоптотическими и антиапоптотическими факторами. В данной работе рассмотрены два из них: способствующий апоптозу фактор транскрипции и супрессор опухолей р53 и противостоящий ему белок В-клеточной лимфомы Bcl-2. Выбор данных белков для исследования обусловлен тем, что оба белка являются ключевыми регуляторами апоптоза и имеют важное значение в патогенезе нервных заболеваний, поскольку зрелые нейроны не являются пролиферирующими клетками. Белок р53 участвует в регуляции множества генов, ответственных за репарацию ДНК, апоптоз, другие биохимические клеточные процессы, особенно важно это при исследовании патологии нейронов. Bcl-2 подавляет апоптоз в различных клетках, в том числе нейронах, контролируя проницаемость мембран митохондрий и ингибируя каспазы. При заболеваниях его экспрессия может как повышаться, например, в случае злокачественных опухолей, так и снижаться, как в случае с нейродегенеративными процессами. Установлено, что р53 и Bcl-2 находятся в тесном взаимодействии в процессе регуляции апоптоза, их соотношение может являться важным прогностическим фактором. Целью данной работы была оценка роли этих белков в патогенезе различных заболеваний нервной системы, и поиск общих закономерностей изменений их экспрессии и коэкспрессии.
Литература
Stoeckli ET (2012) What does the developing brain tell us about neural diseases? Eur J Neurosci 35: 1811–1817. https://doi.org/10.1111/j.1460-9568.2012.08171.x
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal Cell Death. Physiol Rev 98: 813–880. https://doi.org/10.1152/physrev.00011.2017.
Bazhanova ED, Kozlov AA, Litovchenko A.V (2021) Mechanisms of Drug Resistance in the Pathogenesis of Epilepsy: Role of Neuroinflammation. A Literature Review. Brain Sci 11: 1–13. https://doi.org/10.3390/brainsci11050663.
Uzdensky AB (2019) Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24: 687–702. https://doi.org/doi: 10.1007/s10495-019-01556-6.
Tuo Q-Z, Zhang S-T, Lei P (2022) Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 42: 259–305. https://doi.org/10.1002/med.21817.
Mao R, Zong N, Hu Y, Chen Y, Xu Y (2022) Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci Bull 38: 1229–1247. https://doi.org/10.1007/s12264-022-00859-0.
Jarskog LF (2006) Apoptosis in schizophrenia: pathophysiologic and therapeutic considerations. Curr Opin Psychiatry 19: 307–312. https://doi.org/10.1097/01.yco.0000218603.25346.8f.
Ahmed Mohamed Nabil Helaly AMH, El Din Ghorab DS (2023) Schizophrenia as metabolic disease. What are the causes? Metab Brain Dis 38: 795–804. https://doi.org/10.1007/s11011-022-01147-6.
Dong D, Zielke HR, Yeh D, Yang P (2018) Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder. Autism Res 11: 1076–1090. https://doi.org/10.1002/aur.1966.
Wei H, Alberts I, Li X (2014) The apoptotic perspective of autism. Int J Dev Neurosci 36: 13–18. https://doi.org/10.1016/j.ijdevneu.2014.04.004.
Fetit R, Hillary RF, Price DJ, Lawrie SM (2021) The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 129: 35–62. https://doi.org/10.1016/j.neubiorev.2021.07.014.
Scaini G, Mason BL, Diaz AP, Jha MK, Soares JC, Trivedi MH, Quevedo J (2023) Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role? Mol Psychiatry 27: 1095–1102. https://doi.org/10.1038/s41380-021-01312-w.
Zhao B, Fan Q, Liu J, Yin A, Wang P, Zhang W (2022) Identification of Key Modules and Genes Associated with Major Depressive Disorder in Adolescents. Genes (Basel) 13: 464. https://doi.org/10.3390/genes13030464.
Bazhanova ED, Kozlov AA (2022) Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 122: 43–50 (In Russ). https://doi.org/10.17116/jnevro202212205143.
Henshall DC, Simon RP (2005) Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 25: 1557–1572. https://doi.org/10.1038/sj.jcbfm.9600149.
Zhao Y, Jiang W-J, Ma L, Lin Y, Wang X-B (2020) Voltage-dependent anion channels mediated apoptosis in refractory epilepsy // Open Med (Wars) 15: 745–753. https://doi.org/10.1515/med-2020-0113.
Wang W, Ma Y-M, Jiang Z-L, Gao Z-W, Chen W-G (2021) Apoptosis-antagonizing transcription factor is involved in rat post-traumatic epilepsy pathogenesis. Exp Ther Med 21: 290. https://doi.org/10.3892/etm.2021.9721.
Erekat NS (2022) Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 35: 65–78. https://doi.org/10.1002/ca.23792.
Medrano S, Scrable H (2005) Maintaining appearances--the role of p53 in adult neurogenesis. Biochem Biophys Res Commun 331: 828–833. https://doi.org/10.1016/j.bbrc.2005.03.194.
Olivier M, Eeles R, Hollstein M, Khan M, Harris C, Hainaut P (2022) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614. https://doi.org/10.1002/humu.10081.
Ho T, Tan B, Lane D (2020) How the other half lives: what p53 does when it is not being a transcription factor. Int J Mol Sci 21:E13. https://doi.org/10.3390/ijms21010013.
Matoba S, Kang Ju-G, Patino W, Wragg A, Boehm M, Gavrilova O, Hurley P, Bunz F, Hwang P (2006) p53 regulates mitochondrial respiration. Science 312: 1650–1653. https://doi.org/10.1126/science.1126863.
Feng Z, Levine A (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20: 427–434. https://doi.org/10.1016/j.tcb.2010.03.004.
Jiang Y, Armstrong D, Albrecht U, Atkins C, Noebels L, Eichele G, Sweatt D, Beaudet, A (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21: 799–811. https://doi.org/10.1016/s0896-6273(00)80596-6.
Mattson M, Gary D, Chan S, Duan W (2001) Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer’s disease. Biochem Soc Symp 67 :151–162. https://doi.org/10.1042/bss0670151.
Crumrine R, Thomas A, Morgan P (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14 :887–891. https://doi.org/10.1038/jcbfm.1994.119.
D’Sa-Eipper C, Leonard J, Putcha G, Zheng T, Flavell R, Rakic P, Kuida K, Roth K (2001) DNA damage-induced neural precursor cell apoptosis requires p53 and caspase 9 but neither Bax nor caspase 3. Development 128: 137–146. https://doi.org/10.1242/dev.128.1.137.
Morrison R, Wenzel H, Kinoshita Y, Robbins C, Donehower L, Schwartzkroin P (1996) Loss of the p53 tumor suppressor gene protects neurons from kainateinduced cell death. J Neurosci 16: 1337–1345. https://doi.org/10.1523/JNEUROSCI.16-04-01337.1996.
Xu X, Yang D, Wyss-Coray T, Yan J, Gan L, Sun Y, Mucke L (1999) Wild-type but not Alzheimer-mutant amyloid precursor protein confers resistance against p53-mediated apoptosis. Proc Natl Acad Sci U S A 96: 7547–7552. https://doi.org/10.1073/pnas.96.13.7547.
Chatterjee N, Walker G (2017) Mechanisms of DNA damage, repair and mutagenesis. Environ Mol Mutagen 58: 235–263. https://doi.org/10.1002/em.22087.
Gareau J, Lima C (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 12: 861–871. https://doi.org/10.1038/nrm3011.
Uberti D, Belloni M, Grilli M, Spano P, Memo M (2009) Induction of tumoursuppressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurones triggered by excitatory amino acids. Eur. J. Neurosci 10: 246–254. https://doi.org/10.1046/j.1460-9568.1998.00042.x.
Li H, Zhang Z, Li H, Pan X, Wang Y (2023) New Insights into the Roles of p53 in Central Nervous System Diseases. Int J Neuropsychopharmacol 26: 465–473. https://doi.org/10.1093/ijnp/pyad030.
Almeida A, Sánchez-Morán I, Rodríguez C (2021) Mitochondrial-nuclear p53 trafficking controls neuronal susceptibility in stroke. IUBMB Life 73: 582–591. https://doi.org/10.1002/iub.2453.
Ni X, Trakalo J, Valente J, Azevedo MH, Pato MT, Pato CN, Kennedy JL (2005) Human p53 tumor suppressor gene (TP53) and schizophrenia: case-control and family studies. Neurosci Lett 388: 173–178. https://doi.org/10.1016/j.neulet.2005.06.050.
Ozbey U, Yüce H, Namli M, Elkiran T (2011) Investigation of Differences in P53 Gene Polymorphisms between Schizophrenia and Lung Cancer Patients in the Turkish Population. Genet Res Int: 483851. https://doi.org/10.4061/2011/483851.
Engel T, Murphy BM, Schindler CK, Henshall DH (2007) Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epilepsy. Epilepsy Res 77: 151–156. https://doi.org/10.1016/j.eplepsyres.2007.09.001.
Ding D-X, Tian F-F, Guo J-L, Li K, He J-X, Song M-Y, Li L, Huang X (2014) Dynamic expression patterns of ATF3 and p53 in the hippocampus of a pentylenetetrazole-induced kindling model. Mol Med Rep 10: 645–651. https://doi.org/10.3892/mmr.2014.2256.
Sokolova TV, Zabrodskaya YM, Litovchenko AV, Paramonova NM, Kasumov VR, Kravtsova SV, Skiteva EN, Sitovskaya DA, Bazhanova ED (2022) Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy. Int J Mol Sci 23: 12561. https://doi.org/10.3390/ijms232012561.
Martinez B, Peplow PV (2023) MicroRNAs in mouse and rat models of experimental epilepsy and potential therapeutic targets. Neural Regen Res 18: 2108–2118. https://doi.org/10.4103/1673-5374.369093.
Engel T, Tanaka K, Jimenez-Mateos EM, Caballero-Caballero A, Prehn JHM., Henshall DC (2010) Loss of p53 results in protracted electrographic seizures and development of an aggravated epileptic phenotype following status epilepticus. Cell Death Dis 1: e79. https://doi.org/10.1038/cddis.2010.55.
Luo Q, Sun W, Wang Y-F, Li J, Li D-W (2022) Association of p53 with Neurodegeneration in Parkinson's Disease. Parkinsons Dis 2022: 6600944. https://doi.org/10.1155/2022/6600944.
Talebi M, Talebi M, Kakouri E, Farkhondeh T, Pourbagher-Shahri AM, Tarantilis PA, Samarghandian S (2021) Tantalizing role of p53 molecular pathways and its coherent medications in neurodegenerative diseases. Int J Biol Macromol 172: 93–103. https://doi.org/10.1016/j.ijbiomac.2021.01.042.
Li K, van Delft MF, Dewson G (2021) Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO J 40: e107341. https://doi.org/10.15252/embj.2020107341.
Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226: 1097–1099. https://doi.org/10.1126/science.6093263.
Suraweera CD, Banjara S, Hinds MG, Kvansakul M (2022) Metazoans and Intrinsic Apoptosis: An Evolutionary Analysis of the Bcl-2 Family. Int J Mol Sci 23: 3691. https://doi.org/10.3390/ijms23073691.
Choudhury S (2019) A comparative analysis of BCL-2 family. Bioinformation 15: 299–306. https://doi.org/10.6026/97320630015299.
Glab J, Cao Z, Puthalakath H (2020) Bcl-2 family proteins, beyond the veil. Int Rev Cell Mol Biol 351:1–22. https://doi.org/10.1016/bs.ircmb.2019.12.001.
Du X, Xiao J, Fu X, Xu B, Han H, Wang Y, Pei X (2021) A proteomic analysis of Bcl-2 regulation of cell cycle arrest: insight into the mechanisms. J Zhejiang Univ Sci B 22: 839–855. https://doi.org/10.1631/jzus.B2000802.
Merry DE, Korsmeyer SJ (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20: 245–267. https://doi.org/10.1146/annurev.neuro.20.1.245.
Hollville E, Romero SE, Deshmukh M (2019) Apoptotic cell death regulation in neurons. FEBS J 286: 3276–3298. https://doi.org/10.1111/febs.14970.
Akhtar RS, Ness JM, Roth KA (2004) Bcl-2 family regulation of neuronal development and neurodegeneration. Biochim Biophys Acta 1644: 189–203. https://doi.org/10.1016/j.bbamcr.2003.10.013.
Merry DE, Korsmeyer SJ (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20: 245–267. https://doi.org/10.1146/annurev.neuro.20.1.245.
Shacka JJ, Roth KA (2005) Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4: 25–39. https://doi.org/10.2174/1568007053005127.
Peng T, Li S, Liu L, Yang C, Farhan M, Chen L, Su Q, Zheng W (2022) Artemisinin attenuated ischemic stroke induced cell apoptosis through activation of ERK1/2/CREB/BCL-2 signaling pathway in vitro and in vivo. Int J Biol Sci 18: 4578–4594. https://doi.org/10.7150/ijbs.69892.
Yan H, Huang W, Rao J, Yuan J (2021) miR-21 regulates ischemic neuronal injury via the p53/Bcl-2/Bax signaling pathway. Aging (Albany NY) 13: 22242–22255. https://doi.org/10.18632/aging.203530.
Zhang C, Wu Z, Hong W, Wang Z, Peng D, Chen J, Yuan C, Yu S, Xu L, Fang Y (2014) Influence of BCL2 gene in major depression susceptibility and antidepressant treatment outcome. J Affect Disord 155: 288–294. https://doi.org/10.1016/j.jad.2013.11.010.
Vega-García A, Orozco-Suárez S, Villa A, Rocha L, Feria-Romero I, Alonso Vanegas MA, Guevara-Guzmán R (2021) Cortical expression of IL1-β, Bcl-2, Caspase-3 and 9, SEMA-3a, NT-3 and P-glycoprotein as biological markers of intrinsic severity in drug-resistant temporal lobe epilepsy. Brain Res 1758: 147303. https://doi.org/10.1016/j.brainres.2021.147303.
Henshall DC, Clark RS, Adelson PD, Chen M, Watkins SC, Simon RP (2000) Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy. Neurology 55: 250–257. https://doi.org/10.1212/wnl.55.2.250.
Kilany A, Raouf ERA, Gaber AA, Aloush TK, Aref HA, Anwar M, Henshall DC, Abdulghani MO (2012) Elevated serum Bcl-2 in children with temporal lobe epilepsy. Seizure 21: 250–253. https://doi.org/10.1016/j.seizure.2012.01.004.
Zhang Y, Zhang S, Ji Y, Yang X, Liu P, Yu G (2020) Relationship of serum ATPase activity and the levels of neuron- specific enolase, S100B and B-cell lymphoma/leukemia-2 with cognitive function after epileptic seizure. Ann Palliat Med 9: 3366–3372. https://doi.org/10.21037/apm-20-1494.
El-Hodhod MA, Tomoum HY, Al-Aziz MMA, Samaan SM (2006) Serum Fas and Bcl-2 in patients with epilepsy. Acta Neurol Scand 113: 315–321. https://doi.org/10.1111/j.1600-0404.2006.00592.x.
Neri S, Mastroianni G, Gardella E, Aguglia U, Rubboli G (2022) Epilepsy in neurodegenerative diseases. Epileptic Disord 24: 249–273. https://doi.org/10.1684/epd.2021.1406.
Corniello C , Dono F , Evangelista G , Consoli S , De Angelis S, Cipollone S , Liviello D, Polito G, Melchiorre S, Russo M, Granzotto A, Anzellotti F, Onofrj M, Thomas A, Sensi S (2023) Diagnosis and treatment of late-onset myoclonic epilepsy in Down syndrome (LOMEDS): A systematic review with individual patients' data analysis. Seizure 109: 62–67. https://doi.org/10.1016/j.seizure.2023.05.017.
Toscano EC de B, Vieira ELM., Portela ACDC,Reis JLJ, Caliari MV, Giannetti AV, Gonçalves AP, Siqueira JM, Suemoto CK, Leite REP, Nitrini R, Teixeira AL, Rachid MA (2019) Bcl-2/Bax ratio increase does not prevent apoptosis of glia and granular neurons in patients with temporal lobe epilepsy. Neuropathology 39: 348–357. https://doi.org/10.1111/neup.12592.