ВЛИЯНИЕ АПАМИНА НА ПРОФИЛИ ВНЕКЛЕТОЧНО РЕГИСТРИРУЕМЫХ ПОТЕНЦИАЛОВ ДЕЙСТВИЯ КАРДИОМИОЦИТОВ СУБЭПИКАРДА В МОДЕЛИ ИНФАРКТА МИОКАРДА У КРЫС
PDF

Ключевые слова

инфаркт миокарда
кардиомиоциты
внеклеточный потенциал действия
апамин
SK-каналы

Аннотация

Роль Ca2+-активируемых калиевых каналов низкой проводимости (SK) в патогенезе кардиомиопатий различной этиологии остается малоизученной. Целью данной работы было оценить влияние блокатора этих каналов апамина на электрогенез внеклеточно регистрируемых потенциалов действия (вПД) субэпикардиальных миоцитов левого желудочка изолированных сердец ложнооперированных крыс и крыс с инфарктом миокарда, вызванным ишемией-реперфузией. Было установлено, что локальная доставка в зону регистрации вПД блокатора SK-каналов апамина в концентрации 500 нМ не влияла на профили вПД в группе ложнооперированных крыс, но вызывала существенное замедление времени реполяризации и снижение фазы следовой гиперполяризации вПД в группе крыс с инфарктом миокарда. Полученные данные предполагают о том, что указанные изменения в электрогенезе вПД после инфаркта могут быть связаны с усилением экспрессии и/или активности SK-каналов в субэпикардиальных миоцитах. Обсуждается возможная роль этих каналов в структурно-функциональном ремоделировании миокарда левого желудочка сердца после ишемии-реперфузии.

https://doi.org/10.31857/S0044452924040065
PDF

Литература

Hundahl LA, Sattler SM, Skibsbye L, Diness JG, Tfelt-Hansen J, Jespersen T (2017) Pharmacological blockade of small conductance Ca2+-activated K+ channels by ICA reduces arrhythmic load in rats with acute myocardial infarction. Pflugers Arch 469: 739–750. s://doi.org/10.1007/S00424-017-1962-6 s://doi.org/10.1007/S00424-017-1962-6/METRICS

Krause S, Hess ML (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res 55: 176–184. s://doi.org/10.1161/01.RES.55.2.176

Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60: 700–707. s://doi.org/10.1161/01.RES.60.5.700

Tsujii E, Tanaka H, Oyamada M, Fujita K, Hamamoto T, Takamatsu T (2003) In situ visualization of the intracellular Ca2+ dynamics at the border of the acute myocardial infarct. Mol Cell Biochem 248: 135–139. s://doi.org/10.1023/A:1024188302849 s://doi.org/10.1023/A:1024188302849/METRICS

Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, Nie L, Tuxson HR, Young JN, Glatter KA, Vázquez AE, Yamoah EN, Chiamvimonvat N (2003) Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts. J Biol Chem 278: 49085–49094. s://doi.org/10.1074/jbc.M307508200

Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D, Zhang Z, Xu Y, Nie L, Vázquez AE, Nilas Young J, Glatter KA, Chiamvimonvat N (2005) Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol 289: 2714–2723. s://doi.org/10.1152/AJPHEART.00534.2005 s://doi.org/10.1152/AJPHEART.00534.2005/ASSET/IMAGES/LARGE/ZH40120563320006.JPEG

Li N, Timofeyev V, Tuteja D, Xu D, Lu L, Zhang Q, Zhang Z, Singapuri A, Albert TR, Rajagopal A V., Bond CT, Periasamy M, Adelman J, Chiamvimonvat N (2009) Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 587: 1087–1100. s://doi.org/10.1113/JPHYSIOL.2008.167718

Tuteja D, Rafizadeh S, Timofeyev V, Wang S, Zhang Z, Li N, Mateo RK, Singapuri A, Young JN, Knowlton AA, Chiamvimonvat N (2010) Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ Res 107: 851–859. s://doi.org/10.1161/CIRCRESAHA.109.215269

Nagy N, Szuts V, Horváth Z, Seprényi G, Farkas AS, Acsai K, Prorok J, Bitay M, Kun A, Pataricza J, Papp JG, Nánási PP, Varró A, Tóth A (2009) Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J Mol Cell Cardiol 47: 656–663. s://doi.org/10.1016/J.YJMCC.2009.07.019

Chua SK, Chang PC, Maruyama M, Turker I, Shinohara T, Shen MJ, Chen Z, Shen C, Rubart-Von Der Lohe M, Lopshire JC, Ogawa M, Weiss JN, Lin SF, Ai T, Chen PS (2011) Small-Conductance Calcium-Activated Potassium Channel and Recurrent Ventricular Fibrillation in Failing Rabbit Ventricles. Circ Res 108: 971–979. s://doi.org/10.1161/CIRCRESAHA.110.238386

Chang PC, Turker I, Lopshire JC, Masroor S, Nguyen BL, Tao W, Rubart M, Chen PS, Chen Z, Ai T (2013) Heterogeneous upregulation of apamin-sensitive potassium currents in failing human ventricles. J Am Heart Assoc 2:. s://doi.org/10.1161/JAHA.112.004713

Bonilla IM, Long VP, Vargas-Pinto P, Wright P, Belevych A, Lou Q, Mowrey K, Yoo J, Binkley PF, Fedorov V V., Györke S, Janssen PML, Kilic A, Mohler PJ, Carnes CA (2014) Calcium-Activated Potassium Current Modulates Ventricular Repolarization in Chronic Heart Failure. PLoS One 9: e108824. s://doi.org/10.1371/JOURNAL.PONE.0108824

Lee YS oo, Chang PC, Hsueh CH, Maruyama M, Park HW ook, Rhee KS, Hsieh YC, Shen C, Weiss JN, Chen Z, Lin SF, Chen PS (2013) Apamin-Sensitive Calcium-Activated Potassium Currents in Rabbit Ventricles with Chronic Myocardial Infarction. J Cardiovasc Electrophysiol 24: 1144–1153. s://doi.org/10.1111/JCE.12176

Gui L, Bao Z, Jia Y, Qin X, Cheng ZJ, Zhu J, Chen QH (2013) Ventricular tachyarrhythmias in rats with acute myocardial infarction involves activation of small-conductance Ca2+-activated K+ channels. Am J Physiol Heart Circ Physiol 304:. s://doi.org/10.1152/AJPHEART.00820.2011 s://doi.org/10.1152/AJPHEART.00820.2011/ASSET/IMAGES/LARGE/ZH40241206020006.JPEG

Kubasov I V., Stepanov A V., Panov AA, Chistyakova O V., Sukhov IB, Dobretsov MG (2021) Role of Potassium Currents in the Formation of After-Hyperpolarization Phase of Extracellular Action Potentials Recorded from the Control and Diabetic Rat Heart Ventricular Myocytes. Journal of Evolutionary Biochemistry and Physiology 2021 57:6 57: 1511–1521. s://doi.org/10.1134/S0022093021060272

Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Arch 441: 544–550. s://doi.org/10.1007/S004240000447 s://doi.org/10.1007/S004240000447/METRICS

Kuzmenkov AI, Peigneur S, Nasburg JA, Mineev KS, Nikolaev M V., Pinheiro-Junior EL, Arseniev AS, Wulff H, Tytgat J, Vassilevski AA (2022) Apamin structure and pharmacology revisited. Front Pharmacol 13: 977440. s://doi.org/10.3389/FPHAR.2022.977440 s://doi.org/10.3389/FPHAR.2022.977440/BIBTEX

Skibsbye L, Diness JG, Sørensen US, Hansen RS, Grunnet M (2011) The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca2+-activated K+ channels. J Cardiovasc Pharmacol 57: 672–681. s://doi.org/10.1097/FJC.0B013E318217943D

Chang PC, Hsieh YC, Hsueh CH, Weiss JN, Lin SF, Chen PS (2013) Apamin induces early afterdepolarizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium. Heart Rhythm 10: 1516–1524. s://doi.org/10.1016/J.HRTHM.2013.07.003

Stepanov A V., Dobretsov MG, Novikova E V., Filippov YuA, Kubasov I V. (2023) Remodeling of Extracellularly Recorded Action Potentials of Rat Heart Subepicardial Cardiomyocytes after Ischemia Reperfusion Injury. Journal of Evolutionary Biochemistry and Physiology 2023 59:5 59: 1497–1509. s://doi.org/10.1134/S0022093023050046

Zhang R, Han D, Li Z, Shen C, Zhang Y, Li J, Yan G, Li S, Hu B, Li J, Liu P (2018) Ginkgolide C alleviates myocardial ischemia/reperfusion-induced inflammatory injury via inhibition of CD40-NF-κB pathway. Front Pharmacol 9: 327207. s://doi.org/10.3389/FPHAR.2018.00109 s://doi.org/10.3389/FPHAR.2018.00109/BIBTEX

Ciuffreda MC, Tolva V, Casana R, Gnecchi M, Vanoli E, Spazzolini C, Roughan J, Calvillo L (2014) Rat Experimental Model of Myocardial Ischemia/Reperfusion Injury: An Ethical Approach to Set up the Analgesic Management of Acute Post-Surgical Pain. PLoS One 9: e95913. s://doi.org/10.1371/JOURNAL.PONE.0095913

Murakami M, Niwa H, Kushikata T, Watanabe H, Hirota K, Ono K, Ohba T (2014) Inhalation Anesthesia Is Preferable for Recording Rat Cardiac Function Using an Electrocardiogram. Biol Pharm Bull 37: 834–839. s://doi.org/10.1248/BPB.B14-00012

Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC, Corday E, Ganz W (1981) Early phase acute myocardial infarct size quantification: Validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101: 593–600. s://doi.org/10.1016/0002-8703(81)90226-X

Kubasov I V., Stepanov A, Bobkov D, Radwanski PB, Terpilowski MA, Dobretsov M, Gyorke S (2018) Sub-cellular electrical heterogeneity revealed by loose patch recording reflects differential localization of sarcolemmal ion channels in intact rat hearts. Front Physiol 9: 309292. s://doi.org/10.3389/FPHYS.2018.00061 s://doi.org/10.3389/FPHYS.2018.00061/BIBTEX

Tejada T, Tan L, Torres RA, Calvert JW, Lambert JP, Zaidi M, Husain M, Berce MD, Naib H, Pejler G, Abrink M, Graham RM, Lefer DJ, Naqvi N, Husain A (2016) IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A 113: 6949–6954. s://doi.org/10.1073/PNAS.1603127113 s://doi.org/10.1073/PNAS.1603127113/SUPPL_FILE/PNAS.201603127SI.PDF

Shimizu Y, Nicholson CK, Lambert JP, Barr LA, Kuek N, Herszenhaut D, Tan L, Murohara T, Hansen JM, Husain A, Naqvi N, Calvert JW (2016) Sodium sulfide attenuates ischemic-induced heart failure by enhancing proteasomal function in an Nrf2-dependent manner. Circ Heart Fail 9:. s://doi.org/10.1161/CIRCHEARTFAILURE.115.002368

Abramochkin D V., Moiseenko LS, Kuzmin VS (2009) The effect of hydrogen sulfide on electrical activity of rat atrial myocardium. Bull Exp Biol Med 147: 683–686. s://doi.org/10.1007/s10517-009-0607-y s://doi.org/10.1007/S10517-009-0607-Y/METRICS

Pustovit KB, Kuzmin VS, Abramochkin DV (2016) Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors. Naunyn Schmiedebergs Arch Pharmacol 389: 303–313. s://doi.org/10.1007/s00210-015-1199-x s://doi.org/10.1007/S00210-015-1199-X/METRICS

Rozanski GJ, Xu Z, Zhang K, Patel KP (1998) Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol Heart Circ Physiol 274:. s://doi.org/10.1152/ajpheart.1998.274.1.H259 s://doi.org/10.1152/AJPHEART.1998.274.1.H259/ASSET/IMAGES/LARGE/AHEA4014506.JPEG

Zhang XD, Coulibaly ZA, Chen WC, Ledford HA, Lee JH, Sirish P, Dai G, Jian Z, Chuang F, Brust-Mascher I, Yamoah EN, Chen-Izu Y, Izu LT, Chiamvimonvat N (2018) Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes. Scientific Reports 2018 8:1 8: 1–13. s://doi.org/10.1038/s41598-018-22843-3

Ishii TM, Maylie J, Adelman JP (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. Journal of Biological Chemistry 272: 23195–23200. s://doi.org/10.1074/jbc.272.37.23195

Bkaily G, Sculptoreanu A, Jacques D, Economos D, Menard D (1992) Apamin, a highly potent fetal L-type Ca2+ current blocker in single heart cells. Am J Physiol Heart Circ Physiol 262 s://doi.org/10.1152/AJPHEART.1992.262.2.H463

Scriven DRL, Dan P, Moore EDW (2000) Distribution of Proteins Implicated in Excitation-Contraction Coupling in Rat Ventricular Myocytes. s://doi.org/10.1016/S0006-3495(00)76506-4

Hegyi B, Bossuyt J, Griffiths LG, Shimkunas R, Coulibaly Z, Jian Z, Grimsrud KN, Sondergaard CS, Ginsburg KS, Chiamvimonvat N, Belardinelli L, Varró A, Papp JG, Pollesello P, Levijoki J, Izu LT, Boyd WD, Bányász T, Bers DM, Chen-Izu Y (2018) Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proc Natl Acad Sci U S A 115: E3036–E3044. s://doi.org/10.1073/pnas.171821111 s://doi.org/10.1073/PNAS.1718211115/SUPPL_FILE/PNAS.201718211SI.PDF

Weber CR, Piacentino V, Ginsburg KS, Houser SR, Bers DM (2002) Na+-Ca2+ Exchange Current and Submembrane [Ca2+] During the Cardiac Action Potential. Circ Res 90: 182–189. s://doi.org/10.1161/HH0202.103940

Coulombe A, Lefevre IA, Deroubaix E, Thuringer D, Coraboeuf E (1990) Effect of 2,3-butanedione 2-monoxime on slow inward and transient outward currents in rat ventricular myocytes. J Mol Cell Cardiol 22: 921–932. s://doi.org/10.1016/0022-2828(90)90123-J

Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T, Shigekawa M, Kimura J (2001) Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 132: 1317–1325. s://doi.org/10.1038/SJ.BJP.0703926