ЦЕНТРАЛЬНЫЕ ОТВЕТЫ НА ПЕРИФЕРИЧЕСКОЕ ВОСПАЛЕНИЕ МОГУТ ВКЛЮЧАТЬ СНИЖЕНИЕ ЭКСПРЕССИИ КЛЮЧЕВОЙ ПРОТЕАЗЫ АПОПТОЗА КАСПАЗЫ-3 В СТВОЛЕ МОЗГА
PDF

Ключевые слова

липополисахарид
активная каспаза-3
Iba-1
ствол мозга
префронтальная кора

Аннотация

Активация микроглии провоспалительными стимулами, включающими липополисахарид (ЛПС), рассматривается среди факторов риска нейродегенерации, однако ЛПС может оказывать также нейропротективный эффект, что обусловливает дальнейший анализ взаимосвязи микроглиальной активации и регуляторов клеточной гибели. В настоящей работе было проведено сравнительное исследование экспрессий белков маркера активированной микроглии Iba-1 и исполнительной протеазы апоптоза каспазы-3 в стволе мозга и префронтальной коре крыс в зависимости от дозы и режима внутрибрюшинного введения эндотоксина. Через сутки после ЛПС в дозе 0.5 мг/кг, однократно, экспрессии Iba-1 и каспазы-3 в обеих структурах не отличались от контрольных значений. Введение эндотоксина в этой же дозе четырехкратно в течение 7-ми дней (1 раз в 2 дня) привело через сутки после последнего введения к значительному увеличению уровня Iba-1 в стволе мозга, которому сопутствовало достоверное уменьшение экспрессии каспазы-3. Такие же эффекты в этой структуре наблюдались и через 7 дней после однократного введения ЛПС в более высокой дозе – 5 мг/кг. В 7-дневном эксперименте во фронтальной коре, в отличие от ствола мозга, не было обнаружено изменений в экспрессии каспазы-3, а увеличение экспрессии Iba-1 наблюдалось только после однократного введения ЛПС в высокой дозе. Выявленное снижение уровня каспазы-3 в стволе мозга в условиях нейровоспаления может отражать развитие адаптивных нейропротективных процессов, особенно важных для структуры, отвечающей за такие ключевые функции организма, как дыхание, артериальное давление и сердцебиение.

https://doi.org/10.31857/S0044452924030071
PDF

Литература

McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38:1285–1291. https://doi.org/10.1212/wnl.38.8.1285

Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227. https://doi.org/10.1038/nrn752

Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172. https://doi.org/10.1038/s41582-020-00435-y

Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN (2021) Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. Biochemistry (Mosc) 86:657–666. https://doi.org/10.1134/S0006297921060043

Guo S, Wang H, Yin Y (2022) Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front Aging Neurosci 14:815347. https://doi.org/10.3389/fnagi.2022.815347

Xu Y, Gao W, Sun Y, Wu M (2023) New insight on microglia activation in neurodegenerative diseases and therapeutics. Front Neurosci 17:1308345. https://doi.org/10.3389/fnins.2023.1308345

Liu B, Wang K, Gao HM, Mandavilli B, Wang JY, Hong JS (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 77:182–189. https://doi.org/10.1046/j.1471-4159.2001.t01-1-00216.x

Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP (2019) Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci 20:2293. https://doi.org/10.3390/ijms20092293

Kalyan M, Tousif AH, Sonali S, Vichitra C, Sunanda T, Praveenraj SS, Ray B, Gorantla VR, Rungratanawanich W, Mahalakshmi AM, Qoronfleh MW, Monaghan TM, Song BJ, Essa MM, Chidambaram SB (2022) Role of Endogenous Lipopolysaccharides in Neurological Disorders. Cells 11:4038. https://doi.org/10.3390/cells11244038

Klimiec E, Pera J, Chrzanowska-Wasko J, Golenia A, Slowik A, Dziedzic T (2016) Plasma endotoxin activity rises during ischemic stroke and is associated with worse short-term outcome. J Neuroimmunol 297:76–80. https://doi.org/10.1016/j.jneuroim.2016.05.006

Klimiec E, Pasinska P, Kowalska K, Pera J, Slowik A, Dziedzic T (2018) The association between plasma endotoxin, endotoxin pathway proteins and outcome after ischemic stroke. Atherosclerosis 269:138–143. https://doi.org/10.1016/j.atherosclerosis.2017.12.034

Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56. https://doi.org/10.1038/nrn2297

Shishkina GT, Bannova AV, Komysheva NP, Dygalo NN (2020) Anxiogenic-like effect of chronic lipopolysaccharide is associated with increased expression of matrix metalloproteinase 9 in the rat amygdala. Stress 23:708–714. https://doi.org/10.1080/10253890.2020.1793943

Morris G, Walker AJ, Berk M, Maes M, Puri BK (2018) Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 55:5767–5786. https://doi.org/10.1007/s12035-017-0793-y

Holbrook J, Lara-Reyna S, Jarosz-Griffiths H, McDermott M (2019) Tumour necrosis factor signalling in health and disease. F1000Res 8:(F1000 Faculty Rev):111. https://doi.org/10.12688/f1000research.17023.1

Yeh CH, Hsieh LP, Lin MC, Wei TS, Lin HC, Chang CC, Hsing CH (2018) Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia. PLoS One 13:e0191070. https://doi.org/10.1371/journal.pone.0191070

Chen PL, Xu GH, Li M, Zhang JY, Cheng J, Li CF, Yi LT (2023) Yamogenin Exhibits Antidepressant-like Effects via Inhibition of ER Stress and Microglial Activation in LPS-Induced Mice. ACS Chem Neurosci 14:3173–3182. https://doi.org/10.1021/acschemneuro.3c00306

Khan MS, Ali T, Abid MN, Jo MH, Khan A, Kim MW, Yoon GH, Cheon EW, Rehman SU, Kim MO (2017) Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain. Neurochem Int 108:343–354. https://doi.org/10.1016/j.neuint.2017.05.008

Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO (2019) Hesperetin, a Citrus Flavonoid, Attenuates LPS-Induced Neuroinflammation, Apoptosis and Memory Impairments by Modulating TLR4/NF-κB Signaling. Nutrients 11:648. https://doi.org/10.3390/nu11030648

Eslami M, Alizadeh L, Morteza-Zadeh P, Sayyah M (2020) The effect of Lipopolysaccharide (LPS) pretreatment on hippocampal apoptosis in traumatic rats. Neurol Res 42:91–98. https://doi.org/10.1080/01616412.2019.1709139

He F, Zhang N, Lv Y, Sun W, Chen H (2019) Low‑dose lipopolysaccharide inhibits neuronal apoptosis induced by cerebral ischemia/reperfusion injury via the PI3K/Akt/FoxO1 signaling pathway in rats. Mol Med Rep 19:1443–1452. https://doi.org/10.3892/mmr.2019.9827

Yu, H., Kan, J., Tang, M., Zhu, Y., and Hu, B (2023) Lipopolysaccharide preconditioning restricts microglial Overactivation and alleviates inflammation-induced depressive-like behavior in mice. Brain Sci 13:549. https://doi.org/10.3390/brainsci13040549

Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316. https://doi.org/10.1523/JNEUROSCI.20-16-06309.2000

Bannova AV, Menshanov PN, Dygalo NN (2019) The Effect of Lithium Chloride on the Levels of Brain-Derived Neurotrophic Factor in the Neonatal Brain. Neurochem J 13:344–348. https://doi.org/10.1134/S1819712419030048

Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G (2020) Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson's Disease. Int J Mol Sci 21:8421. https://doi.org/10.3390/ijms21228421

Robertson GS, Crocker SJ, Nicholson DW, Schulz JB (2000) Neuroprotection by the inhibition of apoptosis. Brain Pathol 10:283–292. https://doi.org/10.1111/j.1750-3639.2000.tb00262.x

Tang Y, Le W (2016) Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol 53:1181–1194. https://doi.org/10.1007/s12035-014-9070-5

Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9:42. https://doi.org/10.1186/s40035-020-00221-2

Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A LPS (2021) Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection. Mol Neurobiol 58:2407–2422. https://doi.org/10.1007/s12035-020-02227-3

Nicholls JG, Paton JFR (2009) Brainstem: neural networks vital for life. Philos Trans R Soc Lond B Biol Sci 364:2447–2451. https://doi.org/10.1098/rstb.2009.0064

Minné D, Marnewick JL, Engel-Hills P (2023) Early Chronic Stress Induced Changes within the Locus Coeruleus in Sporadic Alzheimer's Disease. Curr Alzheimer Res 20:301–317. https://doi.org/10.2174/1567205020666230811092956

Lu D, Evangelou AV, Shankar K, Dewji FI, Lin J, Levison SW (2023) Neuroprotective effect of lipopolysaccharides in a dual-hit rat pup model of preterm hypoxia-ischemia. Neurosci Lett 795:137033. https://doi.org/10.1016/j.neulet.2022.137033

Hu J, Huang K, Bao F, Zhong S, Fan Q, Li W (2023) Low-dose lipopolysaccharide inhibits spinal cord injury-induced neuronal apoptosis by regulating autophagy through the lncRNA MALAT1/Nrf2 axis. PeerJ 11:e15919. https://doi.org/10.7717/peerj.15919

Wang TH, Xiong LL, Yang SF, You C, Xia QJ, Xu Y, Zhang P, Wang SF, Liu J (2017) LPS pretreatment provides neuroprotective roles in rats with subarachnoid hemorrhage by downregulating MMP9 and Caspase3 associated with TLR4 signaling activation. Mol Neurobiol 54:7746–7760. https://doi.org/10.1007/s12035-016-0259-7

Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B (2011) Caspase signalling controls microglia activation and neurotoxicity. Nature 472:319–324. https://doi.org/10.1038/nature09788

Ji MH, Lei L, Gao DP, Tong JH, Wang Y, Yang JJ (2020) Neural network disturbance in the medial prefrontal cortex might contribute to cognitive impairments induced by neuroinflammation. Brain Behav Immun 89:133–144. https://doi.org/10.1016/j.bbi.2020.06.001

Bowyer JF, Sarkar S, Burks SM, Hess JN, Tolani S, O'Callaghan JP, Hanig JP (2020) Microglial activation and responses to vasculature that result from an acute LPS exposure. Neurotoxicology 77:181–192. https://doi.org/10.1016/j.neuro.2020.01.014

Badshah H, Ali T, Kim MO (2016) Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci Rep 6:24493. https://doi.org/10.1038/srep24493

Lopes PC (2016) LPS and neuroinflammation: a matter of timing. Inflammopharmacology 24:291–293. https://doi.org/10.1007/s10787-016-0283-2

Savchenko VL, Nikonenko IR, Skibo GG, McKanna JA (1997) Distribution of microglia and astrocytes in different regions of the normal adult rat brain. Neurophysiology 29:343–351.

Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG (2000) Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience 96:195–203. https://doi.org/10.1016/s0306-4522(99)00538-2

Tan YL, Yuan Y, Tian L (2020) Microglial regional heterogeneity and its role in the brain. Mol Psychiatry 25:351–367. https://doi.org/10.1038/s41380-019-0609-8