ИЗМЕНЕНИЯ КРОВОТОКОВ В КРАНИАЛЬНОЙ И КАУДАЛЬНОЙ ПОЛЫХ ВЕНАХ У КРОЛИКОВ ПРИ ПОСТУРАЛЬНЫХ ВОЗДЕЙСТВИЯХ В УСЛОВИЯХ ПРИМЕНЕНИЯ ПРОПРАНОЛОЛА, БИСОПРОЛОЛА И МЕТИЛДОФЫ
PDF

Ключевые слова

кровоток в краниальной полой вене
кровоток в каудальной полой вене
ортостаз
антиортостаз
пропранолол
бисопролол
метилдофа

Аннотация

Для лечения гиперадренергической формы синдрома постуральной ортостатической тахикардии в клинической практике применяются блокатор β1,2-адренорецепторов пропранолол, β1-блокатор бисопролол и центральный агонист тормозных пресинаптических α2-адренорецепторов - метилдофа. Сведения о влиянии указанных препаратов на кровотоки в полых венах при постуральных воздействиях в литературе отсутствуют. В острых опытах на наркотизированных кроликах мы изучали изменения кровотоков в краниальной и каудальной полых венах при ортостатическом (угол наклона стола головой вверх на 25º) и антиортостатическом (угол наклона стола головой вниз на -25º) воздействиях в течение 20 с на фоне предварительного внутривенного введения пропранолола, бисопролола и метилдофы. До применения указанных препаратов в ответ на ортостаз на 4 и 20 с отмечено снижение кровотоков в краниальной и каудальной полых венах. При антиортостазе на 4 с кровоток в каудальной вене возрастал, а к 20 с снижался до исходного значения; кровоток в краниальной вене на 4 с уменьшался, а к 20 с – был больше исходного. В ответ на применение пропранолола кровоток в каудальной полой вене снижался в большей степени, чем при внутривенном введении бисопролола и метилдофы. После применения метилдофы при ортостазе к 20 с кровоток в краниальной полой вене уменьшался более выраженно, чем в каудальной, тогда как на фоне действия пропранолола и бисопролола в условиях ортостаза кровотоки в полых венах снижались примерно в равной степени. При антиортостазе к 20 с на фоне применения пропранолола кровоток в каудальной полой вене возрастал больше, чем в краниальной. В условиях применения бисопролола и метилдофы в ответ на антиортостаз кровоток в краниальной полой вене возрастал не только в большей степени, чем в каудальной, но и более выраженно по сравнению с его приростом у кроликов исходно. Следовательно, при постуральных воздействиях на фоне применения указанных препаратов проявляются различия механизмов перераспределений кровотоков в бассейнах краниальной и каудальной полых вен.

https://doi.org/10.31857/S0044452924030093
PDF

Литература

Olshansky B, Cannom D, Fedorowski A, Stewart J, Gibbons C, Sutton R, Shen WK, Muldowney J, Chung TH, Feigofsky S, Nayak H, Calkins H, Benditt DG (2020) Postural Orthostatic Tachycardia Syndrome (POTS): A critical assessment. Prog Cardiovasc Dis 63(3):263–270. https://doi.org/10.1016/j.pcad.2020.03.010

Ormiston CK, Świątkiewicz I, Taub PR (2022) Postural orthostatic tachycardia syndrome as a sequela of COVID-19. Heart Rhythm 19(11):1880–1889. https://doi.org/10.1016/j.hrthm.2022.07.014

Trisvetova EL (2022) Postural Orthostatic Tachycardia Syndrome as a Manifestation of Post-COVID-19 Syndrome. Rat Pharmacother Cardiol 18(2):200–208. https://doi.org/10.20996/1819-6446-2022-04-11

Mar PL, Raj SR (2020) Postural Orthostatic Tachycardia Syndrome: Mechanisms and New Therapies. Annu Rev Med 71:235–248. https://doi.org/10.1146/annurev-med-041818-011630

Anasuya B, Deepak KK, Jaryal AK (2020) Autonomic Tone and Baroreflex Sensitivity during 70° Head-up Tilt in Yoga Practitioners. Int J Yoga 13(3):200–206. https://doi.org/10.4103/ijoy.IJOY_29_20

Wyller VB, Thaulow E, Amlie JP (2007) Treatment of chronic fatigue and orthostatic intolerance with propranolol. J Pediatr 150(6):654–655. https://doi.org/10.1016/j.jpeds.2007.03.012

Ylitalo R, Kähönen M, Nieminen T, Kööbi T, Ylitalo P, Turjanmaa V (2005) Effects of a mononitrate, a beta1-blocker and a dihydropyridine calcium channel blocker on cardiovascular responsiveness to passive orthostasis: a placebo-controlled double-blind study in normotensive volunteers. Arzneimittelforschung 55(3):160–166. https://doi.org/10.1055/s-0031-1296838

Heffernan A, Carty A, O'Malley K, Bugler J (1971) A within-patient comparison of debrisoquine and methyldopa in hypertension. Br Med J 1(5740):75–78. https://doi.org/10.1136/bmj.1.5740.75

Bogomolov VV, Kondratenko SN, Kovachevich IV, Repenkova LG (2106) Propranolol pharmacokinetics and hemodynanic indices in antiorthostatic hypokinesia. Aviakosm Ekolog Med. 50(5):5–10. https://doi.org/10.21687/0233-528x-2016-50-5-5-10

McGovern M, Miletin J (2017) A review of superior vena cava flow measurement in the neonate by functional echocardiography. Acta Paediatr. 106(1):22–29. https://doi.org/10.1111/apa.13584.

Petersen LG, Carlsen JF, Nielsen MB, Damgaard M, Secher NH (2014) The hydrostatic pressure indifference point underestimates orthostatic redistribution of blood in humans. J Appl Physiol (1985) 116(7):730–735. https://doi.org/10.1152/japplphysiol.01175.2013

Li H, Zhang G, Zhou L, Nuss Z, Beel M, Hines B, Murphy T, Liles J, Zhang L, Kem DC, Yu X (2019) Adrenergic Autoantibody-Induced Postural Tachycardia Syndrome in Rabbits. J Am Heart Assoc 8(19):e013006. https://doi.org/10.1161/JAHA.119.013006

Kamiya A, Kawada T, Yamamoto K, Michikami D, Ariumi H, Uemura K, Zheng C, Shimizu S, Aiba T, Miyamoto T, Sugimachi M, Sunagawa K (2005) Resetting of the arterial baroreflex increases orthostatic sympathetic activation and prevents postural hypotension in rabbits. J Physiol. 566(Pt 1):237–246. https://doi.org/10.1113/jphysiol.2005.086512

Matsuo N, Matsuo S, Nakamura Y, Ezomo FO, Kawai Y (2020) Regulatory effects of cervical sympathetic trunk and renal sympathetic nerve activities on cerebral blood flow during head-down postural rotations. Auton Neurosci 229:102738. https://doi.org/10.1016/j.autneu.2020

Cheung SYA, Rodgers T, Aarons L, Gueorguieva I, Dickinson GL, Murby S, Brown C, Collins B, Rowland M (2018) Whole body physiologically based modelling of β-blockers in the rat: events in tissues and plasma following an i.v. bolus dose. Br J Pharmacol 175(1):67–83. https://doi.org/10.1111/bph.14071

Beddies G, Fox PR, Papich MD, Kanikanti VR, Krebber R, Keene BW (2008) Comparison of the pharmacokinetic properties of bisoprolol and carvedilol in healthy dogs. Am J Vet Res 69(12):1659–1663. https://doi.org/10.2460/ajvr.69.12.1659

Buccafusco JJ (1984) Effect of methyldopa on brain cholinergic neurons involved in cardiovascular regulation. A study in conscious spontaneously hypertensive rats. Hypertension 6(5):614–621. https://doi.org/10.1161/01.hyp.6.5.614

Blower PR, Poyser RH, Robertson MI (1976) Effects of alpha-methyldopa on blood pressure in the anaesthetized dog. J Pharm Pharmacol 28(5):437–440. https://doi.org/10.1111/j.2042-7158.1976.tb04650.x

Mishra P, Singh U, Pandey CM, Mishra P, Pandey G (2019) Application of student's t-test, analysis of variance, and covariance. Ann Card Anaesth 22(4):407–411. https://doi.org/doi: 10.4103/aca.ACA_94_19

Moyé L (2016) Statistical Methods for Cardiovascular Researchers. Circ Res 118 (3):439–453. https://doi.org/10.1161/CIRCRESAHA.115.306305.

Whittle RS, Diaz-Artiles A (2023) Gravitational effects on carotid and jugular characteristics in graded head-up and head-down tilt. J Appl Physiol (1985) 134(2):217–229. https://doi.org/10.1152/japplphysiol.00248.2022.

Burma JS, Seok J, Johnston NE, Smirl JD (2023) Cerebral blood velocity during concurrent supine cycling, lower body negative pressure, and head-up tilt challenges: implications for concussion rehabilitation. Physiol Meas 44(8). https://doi.org/10.1088/1361-6579/acecd4

Mohammadyari P, Gadda G, Taibi A (2021) Modelling physiology of haemodynamic adaptation in short-term microgravity exposure and orthostatic stress on Earth. Sci Rep 11(1):4672. https://doi.org/10.1038/s41598-021-84197-7

Williams ND, Brady R, Gilmore S, Gremaud P, Tran HT, Ottesen JT, Mehlsen J, Olufsen MS (2019) Cardiovascular dynamics during head-up tilt assessed via pulsatile and non-pulsatile models. J Math Biol 79(3):987–1014. https://doi.org/10.1007/s00285-019-01386-9

Guo Y, Li H, Deng J, Zhang G, Fischer H, Stavrakis S, Yu X (2022) Low-level tragus stimulation improves autoantibody-induced hyperadrenergic postural tachycardia syndrome in rabbits. Heart Rhythm 4(2):127–133. https://doi.org/10.1016/j.hroo.2022.12.001

Kamiya A, Kawada T, Mizuno M, Shimizu S, Sugimachi M (2010) Parallel resetting of arterial baroreflex control of renal and cardiac sympathetic nerve activities during upright tilt in rabbits. Am J Physiol Heart Circ Physiol 298(6):H1966–H1975. https://doi.org/10.1152/ajpheart.00340.2009

Ricci F, De Caterina R, Fedorowski A (2015) Orthostatic Hypotension: Epidemiology, Prognosis, and Treatment. J Am Coll Cardiol 66(7):848–860. https://doi.org/ 10.1016/j.jacc.2015.06.1084

Arnold AC, Ng J, Raj SR (2018) Postural tachycardia syndrome - Diagnosis, physiology, and prognosis. Auton Neurosci 215:3–11. https://doi.org/10.1016/j.autneu.2018.02.005

Asai Y, Inoue S, Tatebayashi K, Shiraishi Y, Kawai Y (2002) Effects of head-down tilt on cerebral blood flow and somatosensory-evoked potentials in rabbits. Jpn J Physiol 52(1):105–110. https://doi.org/10.2170/jjphysiol.52.105.

Lavery WJ, Kiel JW (2013) Effects of head down tilt on episcleral venous pressure in a rabbit model. Exp Eye Res 111:88–94. https://doi.org/10.1016/j.exer.2013.03.020

Friberg TR, Sanborn G, Weinreb RN (1987) Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol 103(4):523–526. https://doi.org/10.1016/s0002-9394(14)74275-8

Nakamura Y, Matsuo S, Hosogai M, Kawai Y (2009) Vestibular control of arterial blood pressure during head-down postural change in anesthetized rabbits. Exp Brain Res 194(4):563–570. https://doi.org/10.1007/s00221-009-1732-6

Marshall-Goebel K, Ambarki K, Eklund A, Malm J, Mulder E, Gerlach D, Bershad E, Rittweger J (2016) Effects of short-term exposure to head-down tilt on cerebral hemodynamics: a prospective evaluation of a spaceflight analog using phase-contrast MRI. J Appl Physiol (1985) 120(12):1466–1473. https://doi.org/doi: 10.1152/japplphysiol.00841.2015

Ishida S, Miyati T, Ohno N, Hiratsuka S, Alperin N, Mase M, Gabata T (2018) MRI-based assessment of acute effect of head-down tilt position on intracranial hemodynamics and hydrodynamics. J Magn Reson Imaging 47(2):565–571. https://doi.org/10.1002/jmri.25781

Kato T, Kurazumi T, Konishi T, Takko C, Ogawa Y, Iwasaki KI (2022) Effects of -10° and -30° head-down tilt on cerebral blood velocity, dynamic cerebral autoregulation, and noninvasively estimated intracranial pressure. J Appl Physiol (1985) 132(4):938–946. https://doi.org/10.1152/japplphysiol.00283.2021

Ueda K, Aoyama Y, Sasaka-Kitamura F, Kawai Y (2001) Contractile responses of the basilar artery isolated from rabbits exposed to 8-day head-down tilt. Jpn J Physiol 51(2):209–215. https://doi.org/10.2170/jjphysiol.51.209

Saxena PR, van Boom M, van Doorn K, Cairo-Rawlins WI (1980) Electromagnetic flow-probe implantation for cardiac output measurements in rabbits. J Pharmacol Methods 3(2):125–134. https://doi.org/10.1016/0160-5402(80)90023-6

Li X, Wang T, Han K, Zhuo X, Lu Q, Ma A (2011) Bisoprolol reverses down-regulation of potassium channel proteins in ventricular tissues of rabbits with heart failure. J Biomed Res 25(4):274–279. https://doi.org/10.1016/S1674-8301(11)60037-7

van den Buuse M, Head GA, Korner PI (1991) Contribution of forebrain noradrenaline innervation to the central circulatory effects of alpha-methyldopa and 6-hydroxydopamine. Brain Res 541(2):300–308. https://doi.org/10.1016/0006-8993(91)91031-u

Baum T, Sabin C, Moran RM (1981) Comparison of hypotensive, orthostatic and sympathetic inhibitory actions of antihypertensive drugs in rats. Clin Exp Hypertens 3(2):219–243 https://doi.org/10.3109/10641968109033662

Engelman K (1988) Side effects of sympatholytic antihypertensive drugs. Hypertension 11(3 Pt 2):II30–II33. https://doi.org/10.1161/01.hyp.11.3_pt_2.ii30

Kanagy NL (2005) Alpha(2)-adrenergic receptor signalling in hypertension. Clin Sci (Lond). 109(5):431–437. https://doi.org/10.1042/CS20050101

Berg T (2014) β1-Blockers Lower Norepinephrine Release by Inhibiting Presynaptic, Facilitating β1-Adrenoceptors in Normotensive and Hypertensive Rats. Front Neurol 5:51. https://doi.org/10.3389/fneur.2014.00051

Henderson AC, Levin DL, Hopkins SR, Olfert IM, Buxton RB, Prisk GK (2006) Steep head-down tilt has persisting effects on the distribution of pulmonary blood flow. J Appl Physiol (1985) 101(2):583–589. https://doi.org/10.1152/japplphysiol.00087.2006