ИММУНОФЛУОРЕСЦЕНТНОЕ ВЫЯВЛЕНИЕ И ОПРЕДЕЛЕНИЕ ЛОКАЛИЗАЦИИ Са2+-СЕНСОРНЫХ БЕЛКОВ В ДВИГАТЕЛЬНОЙ МУСКУЛАТУРЕ ДОЖДЕВОГО ЧЕРВЯ LUMBRICUS TERRESTRIS
PDF

Ключевые слова

Са2 -сенсорные белки
нервно-мышечный синапс
соматические мышечные клетки
дождевой червь

Аннотация

Методом иммунофлуоресцентного мечения препаратов соматической мышцы дождевого червя показано присутствие в последних кальмодулина, Са2+-кальмодулин зависимой протеинкиназы типа 1 и типа 2, синаптотагмина типа 2 и типа 7 и кальциневрина А. Данные белки определяются как в синаптических, так и во внесинаптических регионах двигательной мышцы. Однако для синаптотагмина типа 2 и типа 7, кальциневрина А установлена их преимущественная локализация в зоне нервно-мышечных синапсов. При этом синаптическая локализация для синаптотагмина типа 7 и кальциневрина А выражена наиболее отчетливо.

https://doi.org/10.31857/S0044452924040053
PDF

Литература

Südhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4: a011353. s://doi.org/10.1101/cshperspect.a011353

DeLorenzo RJ (1982) Calmodulin in neurotransmitter release and synaptic function. Fed Proc 41: 2265–2272.

Xue R, Meng H, Yin J, Xia J, Hu Z, Liu H (2021) The Role of Calmodulin vs. Synaptotagmin in Exocytosis. Front Mol Neurosci 14: 691363. s://doi.org/10.3389/fnmol.2021.691363

Sakaba T, Neher E (2001) Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32: 1119–1131. s://doi.org/10.1016/s0896-6273(01)00543-8

Liu Q, Chen B, Ge Q, Wang ZW (2007) Presynaptic Ca2+/calmodulin-dependent protein kinase II modulates neurotransmitter release by activating BK channels at Caenorhabditis elegans neuromuscular junction. J Neurosci 27: 10404–10413. https://doi.org/10.1523/jneurosci.5634-06.2007

Fujii T, Sakurai A, Littleton JT, Yoshihara M (2021) Synaptotagmin 7 switches short-term synaptic plasticity from depression to facilitation by suppressing synaptic transmission. Sci Rep 11: 4059. s://doi.org/10.1038/s41598-021-83397-5

Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, Lin W, Adachi R, Südhof TC (2006) Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci 26: 13493–13504. https://doi.org/10.1523/jneurosci.3519-06.2006

Martinez-Pena y Valenzuela I, Mouslim C, Akaaboune M (2010) Calcium/calmodulin kinase II-dependent acetylcholine receptor cycling at the mammalian neuromuscular junction in vivo. J Neurosci 30: 12455–12465. s://doi.org/10.1523/jneurosci.3309-10.2010

Schworer CM, Rothblum LI, Thekkumkara TJ, Singer HA (1993) Identification of novel isoforms of the delta subunit of Ca2+/calmodulin-dependent protein kinase II. Differential expression in rat brain and aorta. J Biol Chem 268: 14443–14449. http://dx.doi.org/10.1016/S0021-9258(19)85259-6

Bayer KU, Harbers K, Schulman H (1998) alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J 17: 5598–5605. https://doi.org/10.1093%2Femboj%2F17.19.5598

Martinez-Pena y Valenzuela I, Akaaboune M (2021) The Metabolic Stability of the Nicotinic Acetylcholine Receptor at the Neuromuscular Junction. Cells 10: 358. https://doi.org/10.3390/cells10020358

Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR (2008) Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57: 94–107. https://doi.org/10.1016/j.neuron.2007.11.016

Nesler KR, Starke EL, Boin NG, Ritz M, Barbee SA (2016) Presynaptic CamKII regulates activity-dependent axon terminal growth. Mol Cell Neurosci 76: 33–41. https://doi.org/10.1016/j.mcn.2016.08.007

Chen C, Arai I, Satterfield R, Young SM Jr, Jonas P (2017) Synaptotagmin 2 Is the Fast Ca2+ Sensor at a Central Inhibitory Synapse. Cell Rep 18: 723–736. https://doi.org/10.1016/j.celrep.2016.12.067

Xu J, Mashimo T, Südhof TC (2007) Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54: 567–581. https://doi.org/10.1016/j.neuron.2007.05.004

Weyrer C, Turecek J, Harrison B, Regehr WG (2021) Introduction of synaptotagmin 7 promotes facilitation at the climbing fiber to Purkinje cell synapse. Cell Rep 36: 109719. https://doi.org/10.1016/j.celrep.2021.109719

Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18: 124–134. https://doi.org/10.1016/S0165-6147(97)01046-8

Creamer TP (2020) Calcineurin. Cell Commun Signal 18: 137. https://doi.org/10.1186/s12964-020-00636-4

Volkov EM, Nurullin LF (2005) Effects of cholinergic receptor agonists and antagonists on miniature stimulatory postsynaptic ionic currents in somatic muscle cells of Lumbricus terrestris. Bull Exp Biol Med 139: 360–362. s://doi.org/10.1007/s10517-005-0294-2

Nurullin LF, Almazov ND, Volkov EM (2023) Immunofluorescent Identification of GABAergic Structures in the Somatic Muscle of the Earthworm Lumbricus terrestris. Biochem (Mosc) Suppl Ser A Membr Cell Biol 17: 208–213. https://doi.org/10.1134/S1990747823040074

Parry L, Tanner A, Vinther J (2014) The origin of annelids. Front Palaeontology 57: 1091–1103. s://doi.org/10.1111/pala.12129

Purschke G, Müller MCM (2006) Evolution of body wall musculature. Integr Comp Biol 46: 497–507. s://doi.org/10.1093/icb/icj053

Allentoft-Larsen MC, Gonzalez BC, Daniels J, Katija K, Osborn K, Worsaae K (2021) Muscular adaptations in swimming scale worms (Polynoidae, Annelida). R Soc Open Sci 8: 210541. s://doi.org/10.1098/rsos.210541

Denes AS, Jékely G, Steinmetz PR, Raible F, Snyman H, Prud'homme B, Ferrier DE, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129: 277–288. https://doi.org/10.1016/j.cell.2007.02.040

Volkov EM, Nurullin LF, Nikolsky EE, Švandová I, Vyskočil F (2000) Participation of electrogenic Na+-K+-ATPase in the membrane potential of earthworm body wall muscles. Physiol Res 49: 481–484. ://www.biomed.cas.cz/physiolres/pdf/49/49_481.pdf

Valtorta F, Pennuto M, Bonanomi D, Benfenati F (2004) Synaptophysin: Leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays 26: 445–453. https://doi.org/10.1002/bies.20012

Kwon SE, Chapman ER (2011) Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70: 847–854. https://doi.org/10.1016/j.neuron.2011.04.001

Krause M, Wernig A (1985) The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog. J Neurocytol 14: 765–780. https://doi.org/10.1007/bf01170827

Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463: 1084–1088. https://doi.org/10.1038/nature08744