ВЛИЯНИЕ ГИПЕРНАТРИЕМИИ НА РЕАБСОРБЦИЮ БЕЛКОВ В ПРОКСИМАЛЬНЫХ КАНАЛЬЦАХ ПОЧКИ ОЗЕРНОЙ ЛЯГУШКИ PELOPHYLAX RIDIBUNDUS
PDF

Ключевые слова

амфибии
лизоцим
мегалин
проксимальный каналец
реабсорбция белка
флуоресцентный белок
хлоридный канал

Аннотация

 

Реабсорбция белков в проксимальных канальцах почек происходит одновременно с транспортом ионов и воды, однако мало что известно о зависимости рецептор-опосредованного эндоцитоза белка от изменений водно-солевого баланса. Целью исследования явилось изучение канальцевой реабсорбции и внутриклеточного везикулярного транспорта различных белков в модели гипернатриемии на озёрных лягушках (Pelophylax ridibundus). В опытах лягушкам инъецировали гипертонический раствор хлорида натрия (0.75 М NaCl) за 1 ч до инъекции зелёного или жёлтого флуоресцентных белков (GFP или YFP), а также лизоцима. Для выявления лизоцима и рецептора эндоцитоза мегалина не срезах почек использовали метод флуоресцентной иммуногистохимии. Препараты изучали в лазерном сканирующем конфокальном микроскопе. На полученных изображениях определяли интенсивность флуоресцентных сигналов белков и мегалина в эпителиальных клетках проксимальных канальцев. Для изучения динамики эндоцитоза применяли автоматизированный метод количественной оценки колокализованных сигналов белка и мегалина. Установлено статистически достоверное снижение реабсорбции GFP, YFP и лизоцима в проксимальных канальцах после инъекций раствора NaCl по сравнению с контролем. Показано накопление белков в раннем эндоцитозном компартменте и снижение их поступления в поздние эндосомы и лизосомы, что рассматривается как свидетельство замедления внутриклеточного везикулярного транспорта при гипернатриемии. Полученные данные проанализированы в связи с изменениями показателей крови и деятельности почек в процессе осморегуляции, а также с ролью хлоридных каналов в рецептор-опосредованном эндоцитозе белков. Можно полагать, что усиление эпителиального транспорта ионов в проксимальных канальцах в условиях гипернатриемии приводит к снижению способности эпителиоцитов к реабсорбции белков и ингибированию их внутриклеточного транспорта в процессе эндоцитоза.

https://doi.org/10.31857/S0044452924030047
PDF

Литература

Burggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. Ilar J 48 (3): 260269. https://doi.org/10.1093/ilar.48.3.260

Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflügers Arch 458 (6): 1039–1048. https://doi. org/10.1007/s00424-009-0685-8

Kumari S, Mg S, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Research 20: 256–275. https://doi.org/10.1038/cr.2010.19

De S, Kuwahara S, Saito A (2014) The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. Membranes 4 (3): 333–355. https://doi.org/10.3390/membranes4030333

Moestrup SK, Verroust PJ (2001) Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu Rev Nutr 21: 407–428. https://doi.org/10.1146/annurev.nutr.21.1.407

Christensen E, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3 (4):258–267. https://doi.org/10.1038/nrm778

Saito A, Sato H, Iino N, Takeda T (2010) Molecular mechanisms of receptor-mediated endocytosis in the renal proximal tubular epithelium. J Biomed Biotechnol 2010: 403272. https://doi.org/10.1155/2010/403272

Christensen EI, Birn H, Storm T, Weyer K, Nielsen R (2012) Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27 (4): 223–236. https://doi.org/10.1152/physiol.00022.2012

Anzenberger U, Bit-Avragim N, Rohr S, Rudolph F, Dehmel B, Willnow TE, Abdelilah-Seyfried S (2006) Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. J Cell Sci 119: 2127–2137. https://doi.org/10.1242/jcs.02954

Christensen E, Raciti D, Reggiani L, Verroust PJ, Brändli AW (2008) Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflügers Arch 456 (6): 1163–1176. https://doi.org/10.1007/s00424-008-0488-3

Seliverstova EV, Romanova IV, Prutskova NP (2021) Molecular determinants of protein reabsorption in the amphibian kidneys. Acta Histochem 123 (6): 151760. https://doi.org/10.1016/j.acthis.2021.151760

Prutskova NP, Seliverstova EV (2013) Absorption capacity of renal proximal tubular cells studied by combined injections of YFP and GFP in Rana temporaria L. Comp Biochem Physiol A 166: 138–146. https://doi.org/10.1016/j.cbpa.2013.05.022

Seliverstova EV, Prutskova NP (2015) Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria. Eur J Histochem 59 (2): 2482. https://doi.org/10.4081/ejh.2015.2482

Dantzler WH (2016) Transport of Inorganic Ions by Renal Tubules. In: Comparative Physiology of the Vertebrate Kidney. Springer, NY: 81–157. https://doi.org/10.1007/978-1-4939-3734-9_4

Uchiyama M, Konno N (2006) Hormonal regulation of ion and water transport in anuran amphibians. Gen Comp Endocrinol 147 (1): 54–61. https://doi.org/10.1016/j.ygcen.2005.12.018

Hunter M, Horisberger JD, Stanton B, Giebisch G (1987) The collecting tubule of Amphiuma. I. Electrophysiological characterization. Am J Physiol Renal Physiol 253: F1263–F1272. https://doi.org/10.1152/ajprenal.1987.253.6.F1263

Stoner LC, Engbretson BG, Viggiano SC, Benos DJ, Smith PR (1995) Amiloride-sensitive apical membrane sodium channels of everted Ambystoma collecting tubule. J Membr Biol 144 (2): 147–156. https://doi.org/10.1007/BF00232800

Konno N, Hyodo S, Yamada T, Matsuda K, Uchiyama M (2007) Immunolocalization and mRNA expression of the epithelial Na+ channel α-subunit in the kidney and urinary bladder of the marine toad, Bufo marinus, under hyperosmotic conditions. Cell Tissue Res 328 (3): 583–594. https://doi.org/10.1007/s00441-007-0383-9

Kumano T, Konno N, Wakasugi T, Matsuda K, Yoshizawa H, Uchiyama M (2008) Cellular localization of a putative Na(+)/H(+) exchanger 3 during ontogeny in the pronephros and mesonephros of the Japanese black salamander (Hynobius nigrescens Stejneger). Cell Tissue Res 331: 675–685. https://doi.org/10.1007/s00441-007-0544-x

Schmieder S, Lindenthal S, Ehrenfeld J (2002) Cloning and characterisation of amphibian ClC-3 and ClC-5 chloride channels. Biochim Biophys Acta 1566 (1–2): 55–66. https://doi.org/10.1016/s0005-2736(02)00594-1

Jentsch TJ (2015) Discovery of CLC transport proteins: cloning, structure, function, and pathophysiology. J Physiol 593 (18): 4091–4109. https://doi.org/10.1113/JP270043

Günter W, Lüchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 95 (14): 8075–8080. https://doi.org/10.1073/pnas.95.14.8075

Schwake M, Friedrich T, Jentsch TJ (2001) An internalization signal in ClC-5, an endosomal Cl-channel mutated in Dent's disease. J Biol Chem 276 (15): 12049–12054. https://doi.org/10.1074/jbc.M010642200

Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100 (14): 8472–8477. https://doi.org/10.1073/pnas.1432873100

Ferreira HG, Jesus CH (1973) Salt adaptation in Bufo bufo. J Physiol 228 (3): 583–600. https://doi.org/10.1113/jphysiol.1973.sp010101

Katz U (1989) Strategies of adaptation to osmotic stress in anuran Amphibia under salt and burrowing conditions. Comp Biochem Physiol A 93 (3): 499–503. https://doi.org/10.1016/0300-9629(89)90001-7

Scheer BT, Mumbach MW (1982) Fluxes of sodium ion in frogs (Rana esculenta) acclimated to solutions of NaCl in lake water and effects of hypophysectomy. Comp Biochem Physiol 72A (3): 549–558. https://doi.org/10.1016/0300-9629(82)90121-9

Pang PKT (1977) Osmoregulatory functions of neurohypophysial hormones in fishes and amphibians. Amer Zool 17: 739–749. https://doi.org/10.1093/icb/17.4.739

Nouwen EJ, Kühn ER (1985) Volumetric control of arginine vasotocin and mesotocin release in the frog (Rana ridibunda). J Endocrinol 105 (3): 371–377. https://doi.org/10.1677/joe.0.1050371

Muir TJ, Costanzo JP, Lee RE Jr (2007) Osmotic and metabolic responses to dehydration and urea-loading in a dormant, terrestrially hibernating frog. J Comp Physiol B 177 (8): 917–926. https://doi.org/10.1007/s00360-007-0190-3

Prutskova NP, Seliverstova EV, Kutina AV (2023) Effect of changes in water-salt balance on ion- and osmoregulatory renal functions in the lake frog. Lab Animal Sci 3: 44–53. https://doi.org/10.57034/2618723X-2023-03-03

Gburek J, Birn H, Verroust PJ, Goj B, Jacobsen C, Moestrup SK, Willnow TE, Christensen EI (2003) Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin Am J Physiol Renal Physiol 285 (3): F451–F458. https://doi.org/10.1152/ajprenal.00062

Lee D, Gleich K, Fraser SA, Katerelos M, Mount PF, Power DA (2013) Limited capacity of proximal tubular proteolysis in mice with proteinuria. Am J Physiol Renal Physiol 304: F1009–F1019. https://doi.org/10.1152/ajprenal.00601.2012

Schnermann J, Wahl M, Liebau G, Fischbach H (1968) Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. I. Dependency of reabsorptive net fluid flux upon proximal tubular surface area at spontaneous variations of filtration rate. Pflugers Arch 304: 90–103. https://doi.org/10.1007/BF00586722

Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16: 251–270. https://doi.org/10.1038/ki.1979.128

Cojocel C, Maita K, Baumann K, Hook JB (1984) Renal processing of low molecular weight proteins. Pflügers Arch 401 (4): 333–339. https://doi.org/10.1007/bf00584332

Lazzara MJ, Deen WM (2007) Model of albumin reabsorption in the proximal tubule. Am J Physiol Renal Physiol 292 (1): F430–F439. https://doi.org/10.1152/ajprenal.00010.2006

Smithies O (2003) Why the kidney glomerulus does not clog: A gel permeation/diffusion hypothesis of renal function. PNAS 100: 4108–4113. https://doi.org/10.1073/pnas.0730776100

Prutskova NP, Seliverstova EV (2011) Tubular GFP uptake pattern in the rat and frog kidneys. Comp Biochem Physiol A 160: 175–183. https://doi.org/10.1016/j.cbpa.2011.05.029

Pohl M, Shan Q, Petsch T, Styp-Rekowska B, Matthey P, Bleich M, Bachmann S, Theilig F (2015) Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance. J Am Soc Nephrol 26: 1269–1278. https://doi.org/10.1681/ASN.2014020148

Günter W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse – an animal model for Dent's disease. Pflugers Arch - Eur J Physiol 445: 456–462. https://doi.org/10.1007/s00424-002-0950-6

Sakamoto H, Sado Y, Naito I, Kwon TH, Inoue S, Endo K, Kawasaki, M, Uchida S, Nielsen S, Sasaki S, Marumo F (1999) Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: Colocalization with H+-ATPase. Am J Physiol 277 (6): F957–F965. https://doi.org/10.1152/ajprenal.1999.277.6.F957

Wartosch L, Fuhrmann JC, Schweizer M, Stauber T, Jentsch TJ (2009) Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J 23 (12): 4056–4068. https://doi.org/10.1096/fj.09-130880

Stauber T, Jentsch TJ (2013) Chloride in vesicular trafficking and function. Annu Rev Physiol 75: 453–477. https://doi.org/10.1146/annurev-physiol-030212-183702

Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328 (5984): 1398–1401. https://doi.org/10.1126/science.1188070