МИТОХОНДРИАЛЬНАЯ ДИНАМИКА И МЕТАБОЛИЧЕСКАЯ ПЕРЕСТРОЙКА В КСЕНОТРАНСПЛАНТАТЕ ИНДУЦИРОВАННЫХ ПЛЮРИПОТЕНТНЫХ СТВОЛОВЫХ КЛЕТОК ПРОДУЦИРОВАННЫХ НЕЙРОНАЛЬНЫХ ПРЕДШЕСТВЕННИКОВ ЧЕЛОВЕКА
PDF

Ключевые слова

нейрогенез
трансплантация
индуцированные плюрипотентные клетки человека
митохондриальная динамика
Drp1
окислительное фосфорилирование

Аннотация

Известно, что регуляция митохондриальных функций влияет на дифференцировку и созревание нейронов. Изучение этих процессов имеет как фундаментальное, так и практическое значение для регенеративной нейробиологии. Цель исследования: охарактеризовать изменения деления митохондрий и их связь с активацией окислительного фосфорилирования (метаболического переключения) при созревании ИПСК-продуцированных нейрональных предшественников, при введении в стриатум крыс. Крысам Вистар (n=15) в хвостатое ядро односторонне вводили нейрональные предшественники, полученные из ИПСК человека. С помощью иммуноокрашивания оценивали изменения локализации и экспрессии маркеров дифференцировки нейронов: нестина, NeuN, нейрональной енолазы, а также белка наружной мембраны митохондрий, АТФ-синтазы и белка деления митохондрий Drp1. Измерения проводились на клетках трансплантата через 2 недели, 3 и 6 месяцев после операции. Созревание трансплантата было связано с колебаниями морфометрических параметров митохондриальной фракции и уровня Drp1. Усиление деления митохондрий выявляли через 3 месяца после трансплантации, что предшествовало увеличению содержания АТФ-синтазы к 6 месяцу и переключению трансплантированных клеток на окислительное фосфорилирование. Проведенный эксперимент показал связь митохондриальной динамики с изменениями метаболического профиля и созреванием трансплантированных нейронов. Регуляция митохондриальной динамики может иметь значение для разработки методов улучшения интеграции трансплантированных нейронов в структуры мозга.

https://doi.org/10.31857/S0044452924030107
PDF

Литература

Doss MX, Sachinidis A (2019) Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells 8: 403. https://doi.org/10.3390/cells8050403

Bigarreau J, Rouach N, Perrier AL, Mouthon F, Charvériat M (2022) Modeling and Targeting Neuroglial Interactions with Human Pluripotent Stem Cell Models. Int J Mol Sci 23: 1684. https://doi.org/10.3390/ijms23031684

Crane AT, Voth JP, Shen FX, Low WC (2019) Concise Review: Human-Animal Neurological Chimeras: Humanized Animals or Human Cells in an Animal? Stem Cells 37: 444–452. https://doi.org/10.1002/stem.2971

Aleksandrova MA, Marey M V (2015) [Stem Cells in the Brain of Mammals and Human: Fundamental and Applied Aspects]. Zh Vyssh Nerv Deiat Im I P Pavlova 65: 271–305

Iwata R, Casimir P, Vanderhaeghen P (2020) Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science (80) 369:858–862. https://doi.org/10.1126/science.aba9760

Folmes CDL, Terzic A (2016) Energy metabolism in the acquisition and maintenance of stemness. Semin Cell Dev Biol 52: 68–75. https://doi.org/10.1016/j.semcdb.2016.02.010

Sun X, St. John JC (2016) The role of the mtDNA set point in differentiation, development and tumorigenesis. Biochem J 473: 2955–2971. https://doi.org/10.1042/BCJ20160008

Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C (2020) Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol Life Sci 77: 2483–2496. https://doi.org/10.1007/s00018-019-03430-9

Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, Ma L, Hamm M, Gage FH, Hunter T (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5. https://doi.org/10.7554/eLife.13374

Khacho M, Slack RS (2018) Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev Dyn 247: 47–53. https://doi.org/10.1002/dvdy.24538

Khacho M, Harris R, Slack RS (2019) Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 20:34–48. https://doi.org/10.1038/s41583-018-0091-3

Vantaggiato C, Castelli M, Giovarelli M, Orso G, Bassi MT, Clementi E, De Palma C (2019) The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front Cell Neurosci 13. https://doi.org/10.3389/fncel.2019.00120

Singh M, Denny H, Smith C, Granados J, Renden R (2018) Presynaptic loss of dynamin‐related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. J Physiol 596: 6263–6287. https://doi.org/10.1113/JP276424

Voronkov DN, Stavrovskaya A V., Lebedeva OS, Li W, Olshansky AS, Gushchina AS, Kapkaeva MR, Bogomazova AN, Lagarkova MA, Illarioshkin SN (2023) Morphological Changes in Neural Progenitors Derived from Human Induced Pluripotent Stem Cells and Transplanted into the Striatum of a Parkinson’s Disease Rat Model. Ann Clin Exp Neurol 17: 43–50. https://doi.org/10.54101/ACEN.2023.2.6

Holmqvist S, Lehtonen S, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, Ruponen M, Oksanen M, Djelloul M, Collin A, Goldwurm S, Meyer M, Lagarkova M, Kiselev S, Koistinaho J, Roybon L (2016) Creation of a library of induced pluripotent stem cells from Parkinsonian patients. npj Park Dis 2: 16009. https://doi.org/10.1038/npjparkd.2016.9

Voronkov DN, Stavrovskaya A V., Guschina AS, Olshansky AS, Lebedeva OS, Eremeev A V., Lagarkova MA (2022) Morphological Characterization of Astrocytes in a Xenograft of Human iPSC-Derived Neural Precursor Cells. Acta Naturae 14: 100–108. https://doi.org/10.32607/actanaturae.11710

Lebedeva OS, Sharova EI, Grekhnev DA, Skorodumova LO, Kopylova I V., Vassina EM, Oshkolova A, Novikova I V., Krisanova A V., Olekhnovich EI, Vigont VA, Kaznacheyeva E V., Bogomazova AN, Lagarkova MA (2023) An Efficient 2D Protocol for Differentiation of iPSCs into Mature Postmitotic Dopaminergic Neurons: Application for Modeling Parkinson’s Disease. Int J Mol Sci 24: 7297. https://doi.org/10.3390/ijms24087297

Song W, Bossy B, Martin OJ, Hicks A, Lubitz S, Knott AB, Bossy-Wetzel E (2008) Assessing mitochondrial morphology and dynamics using fluorescence wide-field microscopy and 3D image processing. Methods 46: 295–303. https://doi.org/10.1016/j.ymeth.2008.10.003

Son G, Han J (2018) Roles of mitochondria in neuronal development. BMB Rep 51: 549–556. https://doi.org/10.5483/BMBRep.2018.51.11.226

Iwata R, Vanderhaeghen P (2021) Regulatory roles of mitochondria and metabolism in neurogenesis. Curr Opin Neurobiol 69: 231–240. https://doi.org/10.1016/j.conb.2021.05.003

Steib K, Schäffner I, Jagasia R, Ebert B, Lie DC (2014) Mitochondria Modify Exercise-Induced Development of Stem Cell-Derived Neurons in the Adult Brain. J Neurosci 34: 6624–6633. https://doi.org/10.1523/JNEUROSCI.4972-13.2014

Kim HJ, Shaker MR, Cho B, Cho HM, Kim H, Kim JY, Sun W (2015) Dynamin-related protein 1 controls the migration and neuronal differentiation of subventricular zone-derived neural progenitor cells. Sci Rep 5: 15962. https://doi.org/10.1038/srep15962

Rossi MJ, Pekkurnaz G (2019) Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr Opin Neurobiol 57: 149–155. https://doi.org/10.1016/j.conb.2019.02.001

Zhang S, Zhao J, Quan Z, Li H, Qing H (2022) Mitochondria and Other Organelles in Neural Development and Their Potential as Therapeutic Targets in Neurodegenerative Diseases. Front Neurosci 16. https://doi.org/10.3389/fnins.2022.853911

Berthet A, Margolis EB, Zhang J, Hsieh I, Zhang J, Hnasko TS, Ahmad J, Edwards RH, Sesaki H, Huang EJ, Nakamura K (2014) Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons. J Neurosci 34: 14304–14317. https://doi.org/10.1523/JNEUROSCI.0930-14.2014

Itoh K, Murata D, Kato T, Yamada T, Araki Y, Saito A, Adachi Y, Igarashi A, Li S, Pletnikov M, Huganir RL, Watanabe S, Kamiya A, Iijima M, Sesaki H (2019) Brain-specific Drp1 regulates postsynaptic endocytosis and dendrite formation independently of mitochondrial division. Elife 8. https://doi.org/10.7554/eLife.44739

Beckervordersandforth R, Ebert B, Schäffner I, Moss J, Fiebig C, Shin J, Moore DL, Ghosh L, Trinchero MF, Stockburger C, Friedland K, Steib K, von Wittgenstein J, Keiner S, Redecker C, Hölter SM, Xiang W, Wurst W, Jagasia R, Schinder AF, Ming G, Toni N, Jessberger S, Song H, Lie DC (2017) Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. Neuron 93: 560–573.e6. https://doi.org/10.1016/j.neuron.2016.12.017

Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brèthes D, di Rago J-P, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21: 221–230. https://doi.org/10.1093/emboj/21.3.221

Fame RM, Shannon ML, Chau KF, Head JP, Lehtinen MK (2019) Concerted metabolic shift in early forebrain alters the CSF proteome and depends on cMYC downregulation for mitochondrial maturation. Development 146(20):dev182857. https://doi.org/10.1242/dev.182857

Haque A, Polcyn R, Matzelle D, Banik NL (2018) New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection. Brain Sci 8: 33. https://doi.org/10.3390/brainsci8020033

Tarazona OA, Pourquié O (2020) Exploring the Influence of Cell Metabolism on Cell Fate through Protein Post-translational Modifications. Dev Cell 54: 282–292. https://doi.org/10.1016/j.devcel.2020.06.035

Dai Z, Ramesh V, Locasale JW (2020) The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 21: 737–753. https://doi.org/10.1038/s41576-020-0270-8

Iwata R, Casimir P, Erkol E, Boubakar L, Planque M, Gallego López IM, Ditkowska M, Gaspariunaite V, Beckers S, Remans D, Vints K, Vandekeere A, Poovathingal S, Bird M, Vlaeminck I, Creemers E, Wierda K, Corthout N, Vermeersch P, Carpentier S, Davie K, Mazzone M, Gounko N V., Aerts S, Ghesquière B, Fendt S-M, Vanderhaeghen P (2023) Mitochondria metabolism sets the species-specific tempo of neuronal development. Science (80) 379. https://doi.org/10.1126/science.abn4705