УНИКАЛЬНЫЕ СТРАТЕГИИ СТРЕКОЗ В ОХОТЕ И ИСКЛЮЧИТЕЛЬНО ВЫСОКИЙ УРОВЕНЬ ЭЙКОЗАПЕНТАЕНОВОЙ КИСЛОТЫ В ЛИПИДАХ МОЗГА: ЕСТЬ ЛИ СВЯЗЬ?
PDF

Ключевые слова

омега-3 полиненасыщенные жирные кислоты
фосфолипиды
насекомые
мозг
поведение
когнитивные способности

Аннотация

Докозагексаеновая кислота (С22:6ω3) и в значительно меньшей степени эйкозапентаеновая (С20:5ω3) являются основными полиненасыщенными длинноцепочечными жирными кислотами омега-3 ряда в фосфолипидах мозга млекопитающих. Огромное количество проведенных за последние годы исследований свидетельствует о важной роли омега-3 жирных кислот в регуляции поведения, памяти, психического и когнитивного развития у человека и животных. Показано, что докозагексаеновая и эйкозапентаеновая жирные кислоты необходимы для процессов нейро- и синаптогенеза, формирования новых нейронных сетей, стимуляции продукции нейротрофических факторов, нейрональной и синаптической пластичности. Дефицит поступления в организм омега-3 кислот приводит к снижению пространственной памяти, когнитивного развития, способности к обучению, нарушению зрения, психомоторных функций. В контексте современных представлений о роли омега-3 полиненасыщенных жирных кислот в когнитивных процессах в данной работе автор обсуждает опубликованные ранее собственные данные о резком увеличении количества эйкозапентаеновой кислоты С20:5ω3 в составе различных фосфолипидов в мозгу взрослых стрекоз Aeschna grandis L. по сравнению с личинками, связывая этот феномен с изменением среды обитания, значительным усложнением поведения взрослых форм, развитием высокоэффективных стратегий преследования добычи и переработки зрительной информации.

https://doi.org/10.31857/S0044452924010012
PDF

Литература

Mischiati M, Lin HT, Herold P, Imler E, Olberg R, Leonardo A (2015) Internal models direct dragonfly interception steering. Nature 517(7534): 333–338. DOI: 10.1038/nature14045

Fabian JM, Dunbier JR, O'Carroll DC, Wiederman SD (2019) Properties of predictive gain modulation in a dragonfly visual neuron. J Exp Biol 222(Pt 17). DOI: 10.1242/jeb.207316

Lancer BH, Evans BJE, Wiederman SD (2020) The visual neuroecology of anisoptera. Curr Opin Insect Sci 42: 14–22. DOI: 10.1016/j.cois.2020.07.002

Olberg RM, Worthington AH, Venator KR (2000) Prey pursuit and interception in dragonflies. J Comp Physiol A 186(2): 155–162. DOI: 10.1007/s003590050015

Wiederman SD, O'Carroll DC (2011) Discrimination of features in natural scenes by a dragonfly neuron. J Neurosci 31(19): 7141–7144. DOI: 10.1523/JNEUROSCI.0970-11.2011

Dickinson MH (2015) Motor control: how dragonflies catch their prey. Curr Biol 25(6): R232–R234. DOI: 10.1016/j.cub.2015.01.046

Olberg RM (2012) Visual control of prey-capture flight in dragonflies. Curr Opin Neurobiol 22(2): 267–271. DOI: 10.1016/j.conb.2011.11.015

Wiederman SD, Fabian JM, Dunbier JR, O'Carroll DC (2017) A predictive focus of gain modulation encodes target trajectories in insect vision. Elife 6. DOI: 10.7554/eLife.26478

Sherk TE (1978) Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J Exp Zool 203(1): 61–80. DOI: 10.1002/jez.1402030107

Parnova RG, Svetashev VI (1985) Polyunsaturated fatty acids in tissue lipids of aquatic insects. J Evol Biochem Physiol 21: 139– 144.

Kawashima A, Harada T, Kami H, Yano T, Imada K, Mizuguchi K (2010) Effects of eicosapentaenoic acid on synaptic plasticity, fatty acid profile and phosphoinositide 3-kinase signaling in rat hippocampus and differentiated PC12 cells. J Nutr Biochem 21(4): 268–277. DOI: 10.1016/j.jnutbio.2008.12.015

Janssen CI, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53: 1–17. DOI: 10.1016/j.plipres.2013.10.002

Godos J, Currenti W, Angelino D, Mena P, Castellano S, Caraci F, Galvano F, Del Rio D, Ferri R, Grosso G (2020) Diet and Mental Health: Review of the Recent Updates on Molecular Mechanisms. Antioxidants (Basel) 9(4). DOI: 10.3390/antiox9040346.

Bazinet RP, Laye S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15(12): 771–785. DOI: 10.1038/nrn3820

Martinat M, Rossitto M, Di Miceli M, Laye S (2021) Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 13(4). DOI: 10.3390/nu13041185

Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36(9): 885–895. DOI: 10.1007/s11745-001-0798-1

Stanley D, Kim Y. (2020) Why most insects have very low proportions of C20 polyunsaturated fatty acids: The oxidative stress hypothesis. Arch Insect Biochem Physiol 103(1): e21622. DOI: 10.1002/arch.21622

Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M (1988) Fatty Acids in Insects: Composition, Metabolism, and Biological Significance. Arch Insect Biochem Physiol 9: 1–33.

Moghadam NN, Holmstrup M, Manenti T, Loeschcke V (2015) Phospholipid fatty acid composition linking larval-density to lifespan of adult Drosophila melanogaster. Exp Gerontol 72: 177–183. DOI: 10.1016/j.exger.2015.10.007

Hixson SM, Sharma B, Kainz MJ, Wacker A, Arts MT (2015) Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems. Envir Rev 23(4): 414–424.

Parnova RG (1982) Polyunsaturated fatty acids in phospholipids of the cockroaches central nervous system (Blattoptera, Insecta). J Evol Biochem Physiol 18(6): 611–613.

Pärnänen S, Turunen S (1987) Eicosapentaenoic acid in tissue lipids of Pieris brassicae. Experientia 43: 215–217.

Nor Aliza AR, Bedick JC, Rana RL, Tunaz H, Hoback WW, Stanley DW (2001) Arachidonic and eicosapentaenoic acids in tissues of the firefly, Photinus pyralis (Insecta: Coleoptera). Comp Biochem Physiol A Mol Integr Physiol 128(2): 251–257. DOI: 10.1016/s1095-6433(00)00300-7

Stanley D (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annu Rev Entomol 51: 25–44. DOI: 10.1146/annurev.ento.51.110104.151021

Kammer A, Heinrich B (1974) Metabolic rates related to muscle activity in bumblebees. J Exp Biol 61(1): 219–227.

Hanson BJ, Cummins KW, Cqrgill AS, Lowry RR (1985) Lipid content, fatty acid composition, and the effect of diets on fats of aquatic insects. Comp Biochem Physiol 80B: 257–276.

Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91(4): 905–915. DOI: 10.1007/s00253-011-3441-x

Cui Y, Thomas-Hall SR, Chua ET, Schenk PM (2021) Development of High-Level Omega-3 Eicosapentaenoic Acid (EPA) Production from Phaeodactylum tricornutum. J Phycol 57(1): 258–268. DOI: 10.1111/jpy.13082

Popova ON, Haritonov AY, Sushchik NN, Makhutova ON, Kalachova GS, Kolmakova AA, Gladyshev MI (2017) Export of aquatic productivity, including highly unsaturated fatty acids, to terrestrial ecosystems via Odonata. Sci Total Environ 581-582: 40–48. DOI: 10.1016/j.scitotenv.2017.01.017

Gladyshev MI, Sushchik NN, Makhutova ON (2013) Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins Other Lipid Mediat 107: 117–126. DOI: 10.1016/j.prostaglandins.2013.03.002

MacKenzie R, Kaster JL (2004) Temporal and spatial patterns of insect emergence from a Lake Michigan coastal wetland. Wetlands 24: 688–700.

Crawford MA, Casperd NM, Sinclair AJ (1976) The long chain metabolites of linoleic avid linolenic acids in liver and brain in herbivores and carnivores. Comp Biochem Physiol B 54(3): 395–401. DOI: 10.1016/0305-0491(76)90264-9

Ramstedt B, Slotte JP (2002) Membrane properties of sphingomyelins. FEBS Lett 531(1): 33–37. DOI: 10.1016/s0014-5793(02)03406-3

Sushchik NN, Popova ON, Makhutova ON, Gladyshev MI (2017) Fatty acid composition of odonate's eyes. Dokl Biochem Biophys 475(1): 280–282. DOI: 10.1134/S1607672917040093

Stanley-Samuelson DW, Dadd RH (1984) Polyunsaturated fatty acids in the lipids from adult Galleria mellonella reared on diets to which only one unsaturated fatty acid had been added. Insect Biochem 14(3): 321–327.

Toprak U, Hegedus D, Dogan C, Guney G (2020) A journey into the world of insect lipid metabolism. Arch Insect Biochem Physiol 104(2): e21682. DOI: 10.1002/arch.21682

Wang S, Liu S, Liu H, Wang J, Zhou S, Jiang RJ, Bendena WG, Li S (2010) 20-hydroxyecdysone reduces insect food consumption resulting in fat body lipolysis during molting and pupation. J Mol Cell Biol 2(3): 128–138. DOI: 10.1093/jmcb/mjq006

Corbet PS (1999) Dragonflies: Behaviour and Ecology of Odonata. Harley Books: Colchester. UK.

Piersanti S, Rebora M, Salerno G, Anton S (2020) The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain. Insects 11(12). DOI: 10.3390/insects11120886

Svidersky VL, Plotnikova SI (2004) On structural-functional organization of dragonfly mushroom bodies and some general considerations about purpose of these formations. J Evol Biochemi Physiol 40: 608–624.

Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Berlin. Springer.

Basak S, Mallick R, Duttaroy AK (2020) Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients 12(12). DOI: 10.3390/nu12123615

Kim H, Spector AA (2018) N-Docosahexaenoylethanolamine: A neurotrophic and neuroprotective metabolite of docosahexaenoic acid. Mol Aspects Med 64: 34–44. DOI: 10.1016/j.mam.2018.03.004

Lister J, Barnes CA (2009) Neurobiological changes in the hippocampus during normative aging. Arch Neurol 66(7): 829–833. DOI: 10.1001/archneurol.2009.125

Wurtman RJ (2017) Synapse formation in the brain can be enhanced by co-administering three specific nutrients. Eur J Pharmacol 817: 20–21. DOI: 10.1016/j.ejphar.2017.09.038

He C, Qu X, Cui L, Wang J, Kang JX (2009) Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci U S A 106(27): 11370–11375. DOI: 10.1073/pnas.0904835106

Su HM (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21(5): 364–373. DOI: 10.1016/j.jnutbio.2009.11.003

Crupi R, Marino A, Cuzzocrea S (2013) n-3 fatty acids: role in neurogenesis and neuroplasticity. Curr Med Chem 20(24): 2953–2963. DOI: 10.2174/09298673113209990140

Hashimoto M, Hossain S, Tanabe Y, Kawashima A, Harada T, Yano T, Mizuguchi K, Shido O (2009) The protective effect of dietary eicosapentaenoic acid against impairment of spatial cognition learning ability in rats infused with amyloid beta(1-40). J Nutr Biochem 20(12): 965–973. DOI: 10.1016/j.jnutbio.2008.08.009

Bach SA, de Siqueira LV, Muller AP, Oses JP, Quatrim A, Emanuelli T, Vinade L, Souza DO, Moreira JD (2014) Dietary omega-3 deficiency reduces BDNF content and activation NMDA receptor and Fyn in dorsal hippocampus: implications on persistence of long-term memory in rats. Nutr Neurosci 17(4): 186–192. DOI: 10.1179/1476830513Y.0000000087

Balakrishnan J, Kannan S, Govindasamy A (2021) Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain. Nutr Res 85: 119–134. DOI: 10.1016/j.nutres.2020.12.003

Ahmad A, Murthy M, Greiner RS, Moriguchi T, Salem N Jr (2002) A decrease in cell size accompanies a loss of docosahexaenoate in the rat hippocampus. Nutr Neurosci 5(2): 103–113. DOI: 10.1080/10284150290018973

Shapiro H (2003) Could n-3 polyunsaturated fatty acids reduce pathological pain by direct actions on the nervous system? Prostagland Leukot Essent Fatty Acids 68(3): 219–224. DOI: 10.1016/s0952-3278(02)00273-9

Javanainen M, Enkavi G, Guixa-Gonzalez R, Kulig W, Martinez-Seara H, Levental I, Vattulainen I (2019) Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLoS Comput Biol 15(5): e1007033. DOI: 10.1371/journal.pcbi.1007033

Pifferi F, Roux F, Langelier B, Alessandri JM, Vancassel S, Jouin M, Lavialle M, Guesnet P (2005) (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J Nutr 135(9): 2241–2246. DOI: 10.1093/jn/135.9.2241

Chung WL, Chen JJ, Su HM (2008) Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J Nutr 138(6): 1165–1171. DOI: 10.1093/jn/138.6.1165

Price ER, Sirsat SKG, Sirsat TS, Venables BJ, Dzialowski EM (2018) Rapid embryonic accretion of docosahexaenoic acid (DHA) in the brain of an altricial bird with an aquatic-based maternal diet. J Exp Biol 221(Pt 14). DOI: 10.1242/jeb.183533

Lamarre J, Cheema SK, Robertson GJ, Wilson DR (2021) Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition. J Exp Biol 224(Pt 4). DOI: 10.1242/jeb.235929

Twining CW, Brenna JT, Lawrence P, Shipley JR, Tollefson TN, Winkler DW (2016) Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proc Natl Acad Sci U S A 113(39): 10920–10925. DOI: 10.1073/pnas.1603998113

Zhou XR, Green AG, Singh SP (2011) Caenorhabditis elegans Delta12-desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the Delta12 and Delta15 positions. J Biol Chem 286(51): 43644–43650. DOI: 10.1074/jbc.M111.266114

Marza E, Lesa GM (2006) Polyunsaturated fatty acids and neurotransmission in Caenorhabditis elegans. Biochem Soc Trans 34(Pt 1): 77–80. DOI: 10.1042/BST0340077

de Oliveira Souza A, Couto-Lima CA, Catalao CHR, Santos-Junior NN, Dos Santos JF, da Rocha MJA, Alberici LC (2019) Neuroprotective action of Eicosapentaenoic (EPA) and Docosahexaenoic (DHA) acids on Paraquat intoxication in Drosophila melanogaster. Neurotoxicology 70: 154–160. DOI: 10.1016/j.neuro.2018.11.013

Arien Y, Dag A, Zarchin S, Masci T, Shafir S (2015) Omega-3 deficiency impairs honey bee learning. Proc Natl Acad Sci U S A 112(51): 15761–15766. DOI: 10.1073/pnas.1517375112

Shen LR, Lai CQ, Feng X, Parnell LD, Wan JB, Wang JD, Li D, Ordovas JM, Kang JX (2010) Drosophila lacks C20 and C22 PUFAs. J Lipid Res 51(10): 2985–2992. DOI: 10.1194/jlr.M008524

Chen CT, Domenichiello AF, Trepanier MO, Liu Z, Masoodi M, Bazinet RP (2013) The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms. J Lipid Res 54(9): 2410–2422. DOI: 10.1194/jlr.M038505

Che H, Zhang L, Ding L, Xie W, Jiang X, Xue C, Zhang T, Wang Y (2020) EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis in vitro and in vivo. Food Funct 11(2): 1729–1739. DOI: 10.1039/c9fo02323b

Salvati S, Natali F, Attorri L, Di Benedetto R, Leonardi F, Di Biase A, Ferri F, Fortuna S, Lorenzini P, Sanchez M, Ricceri L, Vitelli L (2008) Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J Neurosci Res 86(4): 776–784. DOI: 10.1002/jnr.21537

Bazinet RP, Metherel AH, Chen CT, Shaikh SR, Nadjar A, Joffre C, Laye S (2020) Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain Behav Immun 85: 21–28. DOI: 10.1016/j.bbi.2019.07.001

Peng Z, Zhang C, Yan L, Zhang Y, Yang Z, Wang J, Song C (2020) EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. Int J Mol Sci 21(5). DOI: 10.3390/ijms21051769

Mocking RJ, Harmsen I, Assies J, Koeter MW, Ruhe HG, Schene AH (2016) Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry 6(3): e756. DOI: 10.1038/tp.2016.29