ИЗМЕНЕНИЯ В ТАКСОНОМИЧЕСКОМ СОСТАВЕ МИКРОБИОМА КИШЕЧНИКА И ИХ СВЯЗЬ С БИОСИНТЕЗОМ И МЕТАБОЛИЗМОМ ВИТАМИНОВ ГРУППЫ В У ДЕТЕЙ С РАССЕЯННЫМ СКЛЕРОЗОМ
PDF

Ключевые слова

педиатрический рассеянный склероз
кишечная микробиота
кишечный микробиом
витамины группы В

Аннотация

Рассеянный склероз (РС) – хроническое воспалительное аутоиммунное заболевание, характеризующееся прогрессирующей демиелинизацией, приводящей к гибели нейронов центральной нервной системы. Заболевание обычно манифестирует у людей в возрасте 20-40 лет, но в последние годы наблюдается увеличение числа случаев с дебютом в РС детском возрасте. Мы предполагаем, что это может быть связано с особенностями состава кишечной микробиоты и ее способностью продуцировать витамины группы В. Цель исследования: выявить изменения состава кишечного микробиома в дебюте рассеянного склероза у детей и взрослых и оценить потенциал кишечного микробиома метаболизировать и синтезировать витамины группы В. В исследовании приняли участие 15 детей (9-17 лет), 15 взрослых, у которых РС манифестировал в детском возрасте и 14 взрослых старше 37 лет с длительность РС менее 1 года. Состав кишечного микробиома определяли методом секвенирования гена 16S рРНК на платформе Illumina с универсальными праймерами на вариабельный участок гена 16S рРНК V3-V4. Для прогнозирования наличия путей метаболизма витаминов группы В в кишечном микробиоме применяли алгоритм PICRUST с использованием базы данных эталонных геномов KEGG. Установлено, что у детей в дебюте РС происходят специфические изменения микробиома, отличные от изменений у взрослых. Эти изменения включают снижение альфа-разнообразия, а также редукцию доминантных филумов и увеличение p_Verrucomicrobiota и p_Mycoplasmatota, что сопровождалось уменьшением числа бактериальных генов, вовлекаемых в пути метаболизма и синтеза витаминов В1, В2, В3, В5 и В12. Такие изменения могут быть связаны с ранним проявлением симптомов РС у детей. Полученные результаты подчеркивают важность дальнейшего изучения влияния кишечного микробиома и его метаболического потенциала на развитие и прогрессирование РС, особенно в детском возрасте, а также могут способствовать разработке современных более эффективных методов лечения и профилактики этого демиелинизирующего заболевания.

https://doi.org/10.31857/S0044452924010098
PDF

Литература

van den Elsen PJ, van Eggermond MCJA, Puentes F, van der Valk P, Baker D, Amor S (2014) The epigenetics of multiple sclerosis and other related disorders. Mult Scler Rel Dis 3(2): 163–175. https://doi.org/10.1016/j.msard.2013.08.007

Loma I, Heyman R (2011) Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 9(3): 409–416. https://doi.org/ 10.2174/157015911796557911

Simpson SJr, Blizzard L, Otahal P, Van der Mei I, Taylor B (2011) Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry 82(10): 1132–1141. https://doi.org/ 10.1136/jnnp.2011.240432

Simpson SJr, Taylor B, Blizzard L, Ponsonby AL, Pittas F, Tremlett H, Dwyer T, Gies P, van der Mei I (2010) Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 68(2): 193–203. https://doi.org/ 10.1002/ana.22043

Trojano M, Lucchese G, Graziano G, Taylor BV, Simpson SJr, Lepore V, Grand'maison F, Duquette P, Izquierdo G, Grammond P, Amato MP, Bergamaschi R, Giuliani G, Boz C, Hupperts R, Van Pesch V, Lechner-Scott J, Cristiano E, Fiol M, Oreja-Guevara C, Saladino ML, Verheul F, Slee M, Paolicelli D, Tortorella C, D'Onghia M, Iaffaldano P, Direnzo V, Butzkueven H, Group MSS, the New Zealand MSPSG (2012) Geographical variations in sex ratio trends over time in multiple sclerosis. PloS one 7(10): e48078. https://doi.org/10.1371/journal.pone.0048078

Wu GF, Alvarez E (2011) The immunopathophysiology of multiple sclerosis. Neurol Clin 29(2): 257–278. https://doi.org/ 10.1016/j.ncl.2010.12.009

Wiendl H, Gold R, Zipp F (2021) Multiple sclerosis therapy consensus group (MSTCG): answers to the discussion questions. Neurologic Res Practice 3: 44. https://doi.org/10.1186/s42466-021-00140-1

Ельчанинова ЕЮ, Смагина ИВ (2017) Невроло Журн (2): 64–71. [El’chaninova EYu, Smagina IV (2017) Nevrol Zh (2): 64–71. (In Russ)]. https://doi.org/10.8821/1560-9545-2017-22-2-64-71]

Смагина ИВ, Ельчанинова ЕЮ, Раевских ВМ Связь антропогенных и биотических факторов с риском педиатрического рассеянного склероза (2020) Медико-фармацевт Журн «Пульс» 22(9): 42–51. [Smagina IV, Elchaninova EY, Raevskikh VM (2020) Association of anthropogenic and biotic factors with the risk of pediatric multiple sclerosis. Med Pharmaceut J "Pulse" 22(9): 42–51. (In Russ)]. https://doi.org/10.26787/nydha-2686-6838-2020-22-9-42-51

Bar-Or А, Hintzen RQ, Dale RC, Rostasy K, Brück W, Chitnis T (2016) Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases. Neurology 87 (9 Suppl 2): S12–19. https://doi.org/10.1212/WNL.0000000000002821

Nemazannikova N, Mikkleson K, Stojanovska L, Blatch GL, Apostolopoulos V (2018) Is there a link between vitamin B and multiple sclerosis? Med Chem 14(2): 170. https://doi.org/10.2174/1573406413666170906123857

Klenner FB (1973) Response of Peripheral and Central Nerve Pathology to Mega-Doses of the Vitamin B-Complex and Other Metabolites. J Appl Nutr.

Nijst TQ, Wevers RA, Schoonderwaldt HC, Hommes OR, de Haan AF (1990) Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia. J Neurol Neurosurg Psychiatry 53(11): 951. https://doi.org/10.1136 / jnnp.53.11.951

Comerford KB (2013) Recent developments in multivitamin/mineral research. Advanc Nutrit 4(6): 644–656. https://doi.org/ 10.3945/an.113.004523

Mikkelsen K, Stojanovska L, Apostolopoulos V (2016) The Effects of Vitamin B in Depression. Curr Med Chem 23(38): 4317–4337. https://doi.org/10.2174/0929867323666160920110810

Mikkelsen K, Stojanovska L, Tangalakis K, Bosevski M, Apostolopoulos V (2016) Cognitive decline: A vitamin B perspective. Maturitas 93: 108–113. https://doi.org/10.1016/j.maturitas.2016.08.001

Mikkelsen K, Stojanovska L, Prakash M, Apostolopoulos V (2017) The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas 96: 58–71. https://doi.org/10.1016/j.maturitas.2016.11.012

Abdurasulova IN (2022) Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 1. Clinical and experimental evidence for the involvement of the gut microbiota in the development of multiple sclerosis. Medical Academic J 22(2): 9–36. https://doi.org/10.17816/MAJ108241]

O’Connor EM (2013) The role of gut microbiota in nutritional status. Curr Opin Clin Nutr Metab Care 16: 509–516. https://doi.org/10.1097/MCO.0b013e3283638eb3

Berding K, Donovan SM (2016) Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nutr Rev 74: 723–736. https://doi.org/10.1093/nutrit/nuw048

Maruvada P, Leone V, Kaplan LM, Chang EB (2017) The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22: 589–599. https://doi.org/10.1016/j.chom.2017.10.005

Rossi M, Amarett A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3: 118–134. https://doi.org/10.3390/nu3010118

Morowitz MJ, Carlisle EM, Alverdy JC (2011) Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am 91: 771–785. https://doi.org/10.1016/j.suc.2011.05.001

Magnúsdóttir S, Ravcheev D, de Crecy-Lagard V, Thiele I (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6: 148. https://doi.org/10.3389/fgene.2015.00148

Steinert RE, Lee Y-K, Sybesma W (2019) Vitamins for the Gut Microbiome. Trends Mol Med 26(2): 137. https://doi.org/10.1016/j.molmed.2019.11.005

Ling Z, Cheng Y, Yan X, Shao L, Liu X, Zhou D, Zhang L, Yu K, Zhao L (2020) Alterations of the Fecal Microbiota in Chinese Patients with Multiple Sclerosis. Front Immunol 11: 590783. https://doi.org/10.3389/fimmu.2020.590783

Efimova D, Tyakht A, Popenko A, Vasilyev A, Altukhov I, Dovidchenko N, Odintsova V, Klimenko N, Loshkarev R, Pashkova M, Elizarova A, Voroshilova V, Slavskii S, Pekov Y, Filippova E, Shashkova T, Levin E, Alexeev D (2018) Knomics-Biota - a system for exploratory analysis of human gut microbiota data. BioData Mining 11: 25. https://doi.org/10.1186/s13040-018-0187-3

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 (19): 2460–2461. https://doi.org/ 10.1093/bioinformatics/btq461

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7): 5069–5072. https://doi.org/10.1128/AEM.03006-05

Shannon CE, Weaver W. The mathematical theory of communication, by CE Shannon (and recent contributions to the mathematical theory of communication). W. Weaver. University of illinois Press. 1949.

Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Statistics 11(4): 265–270.

Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73(5): 1576–1585. https://doi.org/10.1128/AEM.01996-06

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9): 814–821. https://doi.org/10.1038/nbt.2676

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1): 27–30. https://doi.org/10.1093/nar/28.1.27

Charlier F, Weber M, Izak D, Harkin E, Magnus M, Lalli J, Fresnais L, Chan M, Markov N, Amsalem O, Proost S, Krasoulis A, getzze, Repplinger S (2022) Statannotations (v0.6). Zenodo. https://doi.org/10.5281/zenodo.7213391

Hunter JD (2007) Matplotlib: A 2D Graphics Environment. Computing Sci Engineering 9(3): 90–95. https://doi.org/10.1109/MCSE.2007.55

van Rossum G., de Boer J (1991) Interactively Testing Remote Servers Using the Python Programming Language. CWI Quarterly 4(4): 283–303.

OpenEpi Epidemiologic Statistics [Electronic resource]. URL: http://www.openepi.com (accessed: 14.04.2023).

Medstatistic [Electronic resource]. URL: http://www.medstatistic.ru (accessed: 14.04.2023.

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585(7825): 357–362. https://doi.org/10.1038/s41586-020-2649-2

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3): 261–272. https://doi.org/10.1038/s41592-019-0686-2

McKinney W (2010) Data Structures for Statistical Computing in Python. Proceed Python Sci Conf (SciPy 2010): 56–61.

Jhangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, Mazzola MA, Liu S, Glanz BL, Cook S, Tankou S, Stuart F, Melo K, Nejad P, Smith K, Topçuolu BD, Holden J, Kivisäkk P, Chitnis T, De Jager PL, Quintana FJ, Gerber GK, Bry L, Weiner HL (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7: 12015. https://doi.org/10.1038/ncomms12015

Takewaki D, Suda W, Sato W, Takayasu L, Kumar N, Kimura K, Kaga N, Mizuno T, Miyake S, Hattori M, Yamamura T (2020) Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. PNAS 117 (36): 22402–22412. https://doi.org/10.1073/pnas.2011703117

Tremlett H, Fadrosh D, Faruqi AA, Zhu F, Hart J, Roalstad S, Graves J, Lynch S, Waubant E; US Network of Pediatric MS Centers (2016) Gut microbiome in early pediatric multiple sclerosis: a case-control study. Eur J Neurol 23(8): 1308–1321. https://doi.org/10.1111/ene.13026

Tremlett H, Fadrosh DW, Faruqi AA, Hart J, Roalstad S, Graves J, Lynch S, Waubant E; US Network of Pediatric MS Centers (2016) Gut microbiota composition and relapse risk in pediatric MS: A pilot study. J Neurol Sci 363: 153–157. https://doi.org/10.1016/j.jns.2016.02.042

Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, Chihara N, Tomita A, Sato W, Kim S-W, Morita H, Hattori M, Yamamura T. (2015) Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Cluster. PLoS One 10(9): e0137429. https://doi.org/10.1371/journal.pone.0137429

Galluzzo P, Capri FC, Vecchioni L, Realmuto S, Scalisi L, Cottone S, Nuzzo D, Alduina R (2021) Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives. Life (Basel) 11(7): 620. https://doi.org/10.3390/life11070620

Cosorich I, Dalla-Costa G, Sorini C, Ferrarese R, Messina MJ, Dolpady J, Radice E, Mariani A, Testoni PA, Canducci F, Comi G, Martinelli V, Falcone M (2017) High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv 3(7): e1700492. https://doi.org/10.1126/sciadv.1700492

Pellizoni FP, Leite AZ, de Campos Rodrigues N, Ubaiz MJ, Gonzaga MI, Takaoka NNC, Mariano VS, Omori WP, Pinheiro DG, Junior EM, Gomes E, de Oliveira GLV (2021) Detection of Dysbiosis and Increased Intestinal Permeability in Brazilian Patients with Relapsing-Remitting Multiple Sclerosis. Int J Environ Res Public Health 18(9): 4621. https://doi.org/10.3390/ijerph18094621

Horton MK, McCauley K, Fadrosh D, Fujimura K, Graves J, Ness J, Wheeler Y, Gorman MP, Benson LA, Weinstock-Guttman B, Waldman A, Rodriguez M, Tillema JM, Krupp L, Belman A, Mar S, Rensel M, Chitnis T, Casper TC, Rose J, Hart J, Shao X, Tremlett H, Lynch SV, Barcellos LF, Waubant E; U.S. Network of Pediatric MS Centers (2021) Gut microbiome is associated with multiple sclerosis activity in children. Ann Clin Transl Neurol 8(9): 1867–1883. https://doi.org/10.1002/acn3.51441

Castillo-Álvarez F, Pérez-Matute P, Oteo JA, Marzo-Sola ME (2021) The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis. Neurologia (Engl Ed) 36(7): 495–503. https://doi.org/10.1016/j.nrleng.2020.05.006

Oezguen N, Yalcinkaya N, Kücükali CI, Dahdouli M, Hollister EB, Luna RA, Türkoglu R, Kürtüncü M, Eraksoy M, Savidge TC, Tüzün E (2019) Microbiota stratification identifies disease-specific alterations in neuro-Behçet's disease and multiple sclerosis. Clin Exp Rheumatol 37 Suppl 121(6): 58–66.

Tremlett H, Waubant E (2018) Gut microbiome and pediatric multiple sclerosis. Multiple Sclerosis Journal 24(1): 64–68. https://doi.org/10.1177/1352458517737369

Абдурасулова ИН, Мацулевич АВ, Грефнер НМ, Негореева ИГ, Бисага ГН (2023) Повышенный уровень Bifidobacterium в составе кишечной микробиоты – маркер неблагоприятного течения рассеянного склероза. Журн Неврологии и психиатрии им СС Корсакова 123 (7, Вып. 2): 136–137. [Abdurasulova IN, Matsulevich AV, Grefner NM, Negoreeva IG, Bisaga GN (2023) Increased level of Bifidobacterium in intestinal microbiota is a marker of unfavourable course of multiple sclerosis. Zhurn Neurologii i Psychiatriiia im SS Korsakov 123(7, Issue 2): 136–137. (In Russ)]. https://doi.org/10.17116/jnevro2023123072136

Forbes JD, Chen C-y, Knox NC, Marrie R-A, El-Gabalawy H, de Kievit T, Alfa M, Bernstein CN, Van Domselaar G (2018) A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist? Microbiome 6(1): 221. https://doi.org/10.1186/s40168-018-0603-4

Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasén C, Tauhid S, Chu R, Anderson MC, De Jager PL, Polgar-Turcsanyi M, Healy BC, Glanz BI, Bakshi R, Chitnis T, Weiner HL (2021) The Gut Microbiome in Progressive Multiple Sclerosis. Ann Neurol 89(6): 1195–1211. https://doi.org/10.1002/ana.26084

Kozhieva M, Naumova N, Alikina T, Boyko A, Vlassov V, Kabilov MR (2019) Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity. BMC Microbiology 19(1): 309. https://doi.org/10.1186/s12866-019-1685-2

Zeng Q, Junli Gong, Liu X, Chen C, Sun X, Li H, Zhou Y, Cui C, Wang Y, Yang Y, Wu A, Shu Y, Hu X, Lu Z, Zheng SG, Qiu W, Lu Y (2019) Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int. 129:104468. https://doi.org/10.1016/j.neuint.2019.104468

Reynders T, Devolder L, Valles-Colomer M, Van Remoortel A, Joossens M, De Keyser J, Nagels G, D’hooghe M, Raes J (2020) Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Ann Clin Transl Neurol 7(4): 406–419. https://doi.org/10.1002/acn3.51004

Cantarel BL, Waubant E, Chehoud C, Kuczynski J, DeSantis TZ, Warrington J, Venkatesan A, Fraser CM, Mowry EM (2015) Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med 63(5): 729–734. https://doi.org/10.1097/JIM.000000000000192

Абдурасулова ИН, Дмитриев АВ (2023) Витамины группы В: от гомеостаза к патогенезу и лечению рассеянного склероза. Усп физиол наук 54(1): 26–54. [Abdurasulova IN, Dmitriev AV (2023) Group B Vitamins: From Homeostasis to Pathogenesis and Treatment of Multiple Sclerosis. Uspechi Fiziologicheskich nauk 54(1): 26–54. (In Russ)]. https://doi.org/10.31857/S0301179823010034

Fangmann D, Theismann E-M, Türk K, Schulte DM, Relling I, Hartmann K, Keppler JK, Knipp J-R, Rehman A, Heinsen F-A, Franke A, Lenk L, Freitag-Wolf S, Appel E, Gorb S, Brenner C, Seegert D, Waetzig GH, Rosenstiel P, Schreiber S, Schwarz K, Laudes M (2017) Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans. Diabetes Care 41(3): 398–405. https://doi.org/10.2337/dc17-1967

Steinert RE, Sadaghian Sadabad M, Harmsen HJ, Weber P (2016) The prebiotic concept and human health: A changing landscape with riboflavin as a novel prebiotic candidate? Eur J Clin Nutr 70(12): 1348–1353. https://doi.org/10.1038/ejcn.2016.119.

Da Silva AVA, de Castro Oliveira SB, Di Rienzi SC, Brown-Steinke K, Dehan LM, Rood JK, Carreira VS, Le H, Maier EA, Betz KJ, Aihara E, Ley RE, Preidis GA, Shen L, Moore SR (2019) Murine Methyl Donor Deficiency Impairs Early Growth in Association with Dysmorphic Small Intestinal Crypts and Reduced Gut Microbial Community Diversity. Curr Dev Nutr 3(1): nzy070. https://doi.org/10.1093/cdn/nzy070

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; MetaHIT Consortium; Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346): 174–180. https://doi.org/10.1038/nature09944

Said HM (2011) Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 437(3): 357–372. https://doi.org/10.1042/ BJ20110326.

Costliow ZA, Degnan PH (2017) Thiamine Acquisition Strategies Impact Metabolism and Competition in the Gut Microbe Bacteroides thetaiotaomicron. mSystems 2(5): e00116-17. https://doi.org/10 .1128/mSystems.00116-17

Park J, Hosomi K, Kawashima H, Chen Y, Mohsen A, Ohno H, Konishi K, Tanisawa K, Kifushi M, Kogawa M, Takeyama H, Murakami H, Kubota T., Miyachi M, Kunisawa J, Mizuguchi K (2022) Dietary vitamin B1 intake influences gut microbial community and the consequent production of short-chain fatty acids. Nutrients 14(10): 2078. https://doi.org/10.3390/nu14102078

Herrick JA, Alexopoulos CJ (1943) A Further Note on the Production of Thiamine by Actinomyces. Bull Torrey Botanic Club 70(4): 369–371. https://doi.org/10.2307/2481558

Soto-Martin E, Warnke I, Farquharson F, Christodoulou M, Horgan G, Derrien M, Faurie J-M, Flint HJ, Duncan SH, Louis P (2020) Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio 11(4): 20. https://doi.org/10.1128/mBio.00886-20

Hillman ET, Kozik AJ, Hooker CA, Burnett JL, Heo Y, Kiesel VA, Nevins CJ, Oshiro JMKI, Robins MM, Thakkar RD, Wu ST, Lindemann SR (2020) Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic competition among species. Microb Genom 6(7): mgen000399. https://doi.org/10.1099/mgen.0.000399

Abdou E, Hazell AS (2015) Thiamine deficiency: An update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem Res 40(2): 353–361. https://doi.org/10.1007/s11064-014-1430-z

Bâ A (2008) Metabolic and structural role of thiamine in nervous tissues. Cell Mol Neurobiol 28(7): 923–931. https://doi.org/10.1007/s10571-008-9297-7

Butterworth RF (2003) Thiamin deficiency and brain disorders. Nutr Res Rev 16(2): 277–284. https://doi.org/10.1079/NRR200367

Hazell AS, Butterworth RF (2009) Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol 44(2): 141–147. https://doi.org/10.1093/alcalc/agn120

Ji Z, Fan Z, Zhang Y, Yu R, Yang H, Zhou C, Luo J, Ke ZJ (2014) Thiamine deficiency promotes T cell infiltration in experimental autoimmune encephalomyelitis: the involvement of CCL2. J Immunol 193(5): 2157–2167. https://doi.org/10.4049/jimmunol.1302702

Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40(1): 128–139. https://doi.org/10.1016/j.immuni.2013.12.007

Lipszyc PS, Cremaschi GA, Zubilete MZ, Bertolino MLA, Capani F, Genaro AM, Wald MR (2013) Niacin modulates pro-inflammatory cytokine secretion. A potential mechanism involved in its anti-atherosclerotic effect. Open Cardiovasc Med J 7: 90–98. https://doi.org/10.2174/1874192401307010090

Gazzaniga F, Stebbins R, Chang SZ, McPeek MA, Brenner C (2009) Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev 73(3): 529–541. https://doi.org/10.1128/MMBR.00042-08

Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley TP (2003) NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem Biol 10(12): 1195–1204. https://doi.org/10.1016/j.chembiol.2003.11.011

Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y (2018) Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 8:13. https://doi.org/10.3389/fcimb.2018.00013

Crittenden RG, Martinez NR, Playne MJ (2003) Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 80(3): 217–222. https://doi.org/10.1016/s0168-1605(02)00170-8

Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL (2014) Human Gut Microbes Use Multiple Transporters to Distinguish Vitamin B12 Analogs and Compete in the Gut. Cell Host Microbe 15(1): 47–57. https://doi.org/10.1016/j.chom.2013.12.007

Kelly CJ, Alexeev EE, Farb L, Vickery TW, Zheng L, Eric LC, Kitzenberg DA, Battista KD, Kominsky DJ, Robertson CE, Frank DN, Stabler SP, Colgan SP (2019) Oral vitamin B12 supplement is delivered to the distal gut, altering the corrinoid profil and selectively depleting Bacteroides in C57BL/6 mice. Gut Microbes 10(6): 654–662. https://doi.org/10.1080/19490976.2019.1597667

Miller A, Korem M, Almog R, Galboiz Y (2005) Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci 233(1-2): 93–97. https://doi.org/10.1016/j.jns.2005.03.009