Аннотация
В настоящей работе были проанализированы особенности иммуномечения антителами NeuN нейронов спинного мозга кошки, расположенных в четырёх структурах, организующих проекции к мозжечку: ядре Кларка и пограничных клетках – в сегменте L4, центральном шейном ядре – в сегменте С3, и ядре Штиллинга – в сегменте S2. Проведены морфометрическое и денситометрическое исследования. Показано, что все нейроны интереса обладают яркой особенностью: крайне слабым уровнем NeuN-иммуномечения в цитоплазме, с сохранением высокого уровня NeuN-иммуномечения в ядре. Средний размер сомы нейронов интереса составил 1000-1850 мкм2, что сопоставимо с другим типом крупных нейронов на срезах – мотонейронами (1140-1660 мкм2), поэтому мы использовали популяции мотонейронов соответствующих сегментов для сравнения величин оптической плотности. Относительная оптическая плотность нейронов интереса была в несколько раз ниже таковой у мотонейронов (0.060 ± 0.030 vs 0.330 ± 0.127). Достоверных отличий по величине оптической плотности между разными структурами интереса не выявлено. Учитывая морфологическую уникальность и схожесть этих четырех популяций клеток, полагаем, что особенность экспрессии белка NeuN может быть использована в качестве простого метода визуализации клеток, организующих проекции к мозжечку, что представляет собой ценность как при целевом морфологическим исследовании, так и при проведении гистологического контроля после физиологического эксперимента.
Литература
Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81: 539–568. s://doi.org/10.1152/physrev.2001.81.2.539
Matsushita M, Hosoya Y (1979) Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Res 173: 185–200. s://doi.org/10.1016/0006-8993(79)90620-6
Baek M, Menon V, Jessell TM, Hantman AW, Dasen JS (2019) Molecular logic of spinocerebellar tract neuron diversity and connectivity. Cell Rep 27: 2620–2635.e4. s://doi.org/10.1016/j.celrep.2019.04.113
Boehme CC (1968) The neural structure of Clarke’s nucleus of the spinal cord. J Comp Neurol 132: 445–461. s://doi.org/10.1002/cne.901320306
Mann MD (1973) Clarke’s column and the dorsal spinocerebellar tract: a review. Brain Behav Evol 7: 34–83. s://doi.org/10.1159/000124397
Petras JM, Cummings JF (1977) The origin of spinocerebellar pathways. II. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord. J Comp Neurol 173. s://doi.org/10.1002/cne.901730405
Snyder RL, Faull RL, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. J Comp Neurol 181: 833–852. s://doi.org/10.1002/cne.901810409
Clarke JAL (1859) Further researches on the grey substance of the spinal cord. Philos Trans R Soc Lond 149: 437–467. s://doi.org/10.1098/rstl.1859.0022
Ha H, Liu CN (1968) Cell origin of the ventral spinocerebellar tract. J Comp Neurol 133: 185–206. s://doi.org/10.1002/cne.901330204
Shrestha SS, Bannatyne BA, Jankowska E, Hammar I, Nilsson E, Maxwell DJ (2012) Inhibitory inputs to four types of spinocerebellar tract neurons in the cat spinal cord. Neuroscience 226: 253–269. s://doi.org/10.1016/j.neuroscience.2012.09.015
Xu Q, Grant G (1988) Collateral projections of neurons from the lower part of the spinal cord to anterior and posterior cerebellar termination areas. A retrograde fluorescent double labeling study in the cat. Exp Brain Res 72: 562–576. s://doi.org/10.1007/BF00250601
Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184: 81–106. s://doi.org/10.1002/cne.901840106
Arshavsky YI, Berkinblit MB, Fukson OI, Gelfand IM, Orlovsky GN (1972) Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Res 43: 276–279. s://doi.org/10.1016/0006-8993(72)90296-X
Edgley SA, Jankowska E (1988) Information processed by dorsal horn spinocerebellar tract neurones in the cat. J Physiol 397: 81–97. s://doi.org/10.1113/jphysiol.1988.sp016989
Jankowska E, Nilsson E, Hammar I (2011) Processing information related to centrally initiated locomotor and voluntary movements by feline spinocerebellar neurones. J Physiol 589: 5709–5725. s://doi.org/10.1113/jphysiol.2011.213678
Pop IV, Espinosa F, Blevins CJ, Okafor PC, Ogujiofor OW, Goyal M, Mona B, Landy MA, Dean KM, Gurumurthy CB, Lai HC (2022) Structure of long-range direct and indirect spinocerebellar pathways as well as local spinal circuits mediating proprioception. J Neurosci Off J Soc Neurosci 42: 581–600. s://doi.org/10.1523/JNEUROSCI.2157-20.2021
Hirai N, Hongo T, Sasaki S, Yoshida K (1979) The neck and labyrinthine influences on cervical spinocerebellar tract neurones of the central cervical nucleus in the cat. Prog Brain Res 50: 529–536. s://doi.org/10.1016/S0079-6123(08)60851-1
Matsushita M, Tanami T (1987) Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 266: 376–397. s://doi.org/10.1002/cne.902660306
Neuhuber WL, Zenker W (1989) Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol 280: 231–253. s://doi.org/10.1002/cne.902800206
Sengul G, Fu Y, Yu Y, Paxinos G (2015) Spinal cord projections to the cerebellum in the mouse. Brain Struct Funct 220: 2997–3009. s://doi.org/10.1007/s00429-014-0840-7
Edgley SA, Grant GM (1991) Inputs to spinocerebellar tract neurones located in Stilling’s nucleus in the sacral segments of the rat spinal cord. J Comp Neurol 305: 130–138. s://doi.org/10.1002/cne.903050112
Luo Y, Onozato T, Wu X, Sasamura K, Sakimura K, Sugihara I (2020) Dense projection of Stilling’s nucleus spinocerebellar axons that convey tail proprioception to the midline area in lobule VIII of the mouse cerebellum. Brain Struct Funct 225: 621–638. s://doi.org/10.1007/s00429-020-02025-6
Merkul’eva NS, Veshchitskii AA, Shkorbatova PYu, Shenkman BS, Musienko PE, Makarov FN (2017) Morphometric characteristics of the dorsal nuclei of Clarke in the rostral segments of the lumbar part of the spinal cord on cats. Neurosci Behav Physiol 47: 851–856. s://doi.org/10.1007/s11055-017-0481-4
Veshchitskii A, Shkorbatova P, Merkulyeva N (2022) Neurochemical atlas of the cat spinal cord. Front Neuroanat 16: 1034395. s://doi.org/10.3389/fnana.2022.1034395
Olude MA, Idowu AO, Mustapha OA, Olopade JO, Akinloye AK (2015) Spinal cord studies in the african giant rat (Cricetomys gambianus, Waterhouse). Niger J Physiol Sci Off Publ Physiol Soc Niger 30: 25–32.
Terman JR, Wang XM, Martin GF (1998) Origin, course, and laterality of spinocerebellar axons in the North American opossum, Didelphis virginiana. Anat Rec 251: 528–547. https://doi.org/10.1002/(SICI)1097-0185(199808)251:4<528::AID-AR9>3.0.CO;2-N
Watson C, Sengul G, Tanaka I, Rusznak Z, Tokuno H (2015) The spinal cord of the common marmoset (Callithrix jacchus). Neurosci Res 93: 164–175. https://doi.org/10.1016/j.neures.2014.12.012
Grant G, Wiksten B, Berkley KJ, Aldskogius H (1982) The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis. J Comp Neurol 204: 336–348. https://doi.org/10.1002/cne.902040405
Fu Y, Sengul G, Paxinos G, Watson C (2012) The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse. Neurosci Lett 518: 161–166. https://doi.org/10.1016/j.neulet.2012.05.002
Cooper S, Sherrington CS (1940) Gower’s tract and spinal border cells. Brain 63: 123–134. https://doi.org/10.1093/brain/63.2.123
Coughlan E, Garside VC, Wong SFL, Liang H, Kraus D, Karmakar K, Maheshwari U, Rijli FM, Bourne J, McGlinn E (2019) A hox dode defines spinocerebellar neuron subtype regionalization. Cell Rep 29: 2408–2421.e4. s://doi.org/10.1016/j.celrep.2019.10.048
Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Dev Camb Engl 116: 201–211. s://doi.org/10.1242/dev.116.1.201
Merkulyeva N, Mikhalkin A, Zykin P (2018) Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats. Cell Mol Neurobiol 38: 1137–1143. s://doi.org/10.1007/s10571-018-0585-6
Merkulyeva NS, Mikhalkin AA, Nikitina NI (2020) Characteristics of the neurochemical state of neurons in the mesencephalic nucleus of the trigeminal nerve in cats. Neurosci Behav Physiol 50:511–515. s://doi.org/10.1007/s11055-020-00927-w
Mikhalkin AA, Merkulyeva NS (2021) Peculiarities of age-related dynamics of neurons in the cat lateral geniculate nucleus as revealed in frontal versus sagittal slices. J Evol Biochem Physiol 57: 1001–1007. s://doi.org/10.1134/S0022093021050021
Shkorbatova PY, Lyakhovetskii VA, Merkulyeva NS, Veshchitskii AA, Bazhenova EY, Laurens J, Pavlova NV, Musienko PE (2019) Prediction algorithm of the cat spinal segments lengths and positions in relation to the vertebrae. Anat Rec 302: 1628–1637. https://doi.org/10.1002/ar.24054
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. s://doi.org/10.1038/nmeth.2019
Edgley SA, Gallimore CM (1988) The morphology and projections of dorsal horn spinocerebellar tract neurones in the cat. J Physiol 397: 99–111. https://doi.org/10.1113/jphysiol.1988.sp016990
Sengul G, Watson C, Tanaka I, Paxinos G (2012) Atlas of the spinal cord: mouse, rat, rhesus, marmoset, and human. Elsevier Science. pp. 360.
Shapley R, Enroth-Cugell C (1984) Visual adaptation and retinal gain controls. Prog Retin Res 3: 263–346. s://doi.org/10.1016/0278-4327(84)90011-7
Cummings JF, Petras JM (1977) The origin of spinocerebellar pathways. I. The nucleus cervicalis centralis of the cranial cervical spinal cord. J Comp Neurol 173: 655–692. https://doi.org/10.1002/cne.901730404
Morin F, Schwartz HG, O’leary JL (1951) Experimental study of the spinothalamic and related tracts. Acta Psychiatr Neurol Scand 26: 371–396. s://doi.org/10.1111/j.1600-0447.1951.tb09681.x
Sprague JM (1953) Spinal border cells and their role in postural mechanism (Schiff-Sherrington phenomenon). J Neurophysiol 16: 464–474. https://doi.org/10.1152/jn.1953.16.5.464
Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci 13: 1233–1239. s://doi.org/10.1038/nn.2637
Thomson DB, Isu N, Wilson VJ (1996) Responses of neurons of the cat central cervical nucleus to natural neck and vestibular stimulation. J Neurophysiol 76: 2786–2789. https://doi.org/10.1152/jn.1996.76.4.2786
Xiong G, Matsushita M (2001) Ipsilateral and contralateral projections from upper cervical segments to the vestibular nuclei in the rat. Exp Brain Res 141: 204–217. https://doi.org/10.1007/s002210100867
Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284: 31052–31061. s://doi.org/10.1074/jbc.M109.052969
Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73: 400–409. https://doi.org/10.1002/jnr.10655
Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27: 447–452. https://doi.org/10.1016/j.tins.2004.05.013
Alekseeva OS, Gusel’nikova VV, Beznin GV, Korzhevskii DE (2015) Prospects for the application of neun nuclear protein as a marker of the functional state of nerve cells in vertebrates. J Evol Biochem Physiol 51: 357–369. https://doi.org/10.1134/S0022093015050014
Friese A, Kaltschmidt JA, Ladle DR, Sigrist M, Jessell TM, Arber S (2009) Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc Natl Acad Sci U S A 106: 13588–13593. s://doi.org/10.1073/pnas.0906809106
Shneider NA, Brown MN, Smith CA, Pickel J, Alvarez FJ (2009) Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Develop 4: 42. s://doi.org/10.1186/1749-8104-4-42
Veshchitskii AA, Kirik OV, Korzhevskii DE, Merkulyeva N (2023) Development of neurochemical labeling in the intermediolateral nucleus of cats’ spinal cord. Anat Rec 306: 2400–2410. s://doi.org/10.1002/ar.24943
Tsang YM, Chiong F, Kuznetsov D, Kasarskis E, Geula C (2000) Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS. Brain Res 861: 45–58. s://doi.org/10.1016/s0006-8993(00)01954-5
Liau ES, Jin S, Chen Y-C, Liu W-S, Calon M, Nedelec S, Nie Q, Chen J-A (2023) Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons. Nat Commun 14: 46. s://doi.org/10.1038/s41467-022-35574-x
Balbi P, Martinoia S, Massobrio P (2015) Axon-somatic back-propagation in detailed models of spinal alpha motoneurons. Front Comput Neurosci 9: 15. https://doi.org/10.3389/fncom.2015.00015
Vanderhorst VG, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382: 46–76
Fedirchuk B, Stecina K, Kristensen KK, Zhang M, Meehan CF, Bennett DJ, Hultborn H (2013) Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions. J Neurophysiol 109: 375–388. s://doi.org/10.1152/jn.00649.2012
Jankowska E, Hammar I (2013) Interactions between spinal interneurons and ventral spinocerebellar tract neurons. J Physiol 591: 5445–5451. https://doi.org/10.1113/jphysiol.2012.248740
Chalif JI, Martínez-Silva M de L, Pagiazitis JG, Murray AJ, Mentis GZ (2022) Control of mammalian locomotion by ventral spinocerebellar tract neurons. Cell 185:328–344.e26. https://doi.org/10.1016/j.cell.2021.12.014