ЭКСПРЕССИЯ ГЕНОВ-РЕГУЛЯТОРОВ МИОГЕНЕЗА У СЕГОЛЕТОК АТЛАНТИЧЕСКОГО ЛОСОСЯ (Salmo salar L.) В УСЛОВИЯХ АКВАКУЛЬТУРЫ ПРИ ВЛИЯНИИ РАЗНЫХ РЕЖИМОВ ОСВЕЩЕНИЯ И КОРМЛЕНИЯ
PDF

Ключевые слова

фотопериод
режим кормления
атлантический лосось
уровень экспрессии генов мышечных белков

Аннотация

Исследовали уровень экспрессии генов тяжелой и легкой цепи миозина (myhc, mlc-2), транскрипционных факторов регуляции миогенеза (myf5, myog, паралогов myod1), паралогов миостатина и инсулиноподобных факторов роста (igf1 и igf2) в мышцах сеголеток лосося, искусственно выращиваемых при разных режимах освещения и кормления при постоянной температуре воды в регионе Северная Осетия-Алания. Совокупное действие режимов освещения и питания отражалось на экспрессии генов myhc, mlc-2, myf5, myod1a, myod1b, myod1c. Так особи, выращиваемые при постоянном режиме освещения, отличались более высокими уровнями экспрессии генов myf5, myhc и mlc-2 по сравнению с рыбами при естественном освещении, что так же соответствовало их темпам роста. Экспрессия генов IGF по-разному изменялась на протяжении эксперимента: уровень экспрессии гена igf1 увеличивался, а гена igf2 – сначала увеличивался через месяц исследования, затем уменьшался. Результаты свидетельствуют о различиях в процессах регуляции миогенеза в зависимости от условий освещения и кормления.

https://doi.org/10.31857/S0044452924010047
PDF

Литература

Watabe S (2001) Myogenic regulatory factors. In Fish Physiology-Muscle Development and Growth. Johnston IA Ed. Academic Press 18: 19–41.

Rescan PY (2001) Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp Biochem Physiol B 130(1): 1–12. https://doi.org/10.1016/S1096-4959(01)00412-2

Bower NI, Johnston IA (2010) Paralogs of Atlantic salmon myoblast determination factor genes are distinctly regulated in proliferating and differentiating myogenic cells. Am J Phys Regul Integr Comp Phys 298: 1615–1626. https://doi.org/10.1152/ajpregu.00114.2010

Macqueen DJ, Johnston IA (2006) A novel salmonid myoD gene is distinctly regulated during development and probably arose by duplication after the genome tetraploidization. FEBS Lett 580(21): 4996–5002. https://doi.org/10.1016/j.febslet.2006.08.016

Overturf K, Hardy RW (2001) Myosin expression levels in trout muscle: a new method for monitoring specific growth rates for rainbow trout Oncorhynchus mykiss (Walbaum) on varied planes of nutrition. Aquaculture Research 32(4): 315–322. https://doi.org/10.1046/j.1365-2109.2001.00582.x

Hevroy EM, Jordal A-EO, Hordvik I, Espe M, Hemre G-I, Olsvik PA (2006) Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar. Aquaculture 252: 453–461. https://doi.org/10.1016/j.aquaculture.2005.07.003

Imsland AK, Le Francois NR, Lammare SG, Ditlecadet D, Sigurosson S, Foss A (2006) Myosin expression levels and enzyme activity in juvenile spotted wolfish (Anarhichas minor) muscle: a method for monitoring growth rates. Can J Fish Aquat Sci 63: 1959–1967. https://doi.org/10.1139/f06-091

Dhillon RS, Esbaugh AJ, Wang YS, Tufts BL (2009) Characterization and expression of a myosin heavy-chain isoform in juvenile walleye Sander vitreus. J Fish Biol 75: 1048–1062. https://doi.org/10.1111/j.1095-8649.2009.02376.x

Alami-Durante H, Cluzeaud M, Bazin D, Schrama JW, Saravanan S, Geurden I (2019) Muscle growth mechanisms in response to isoenergetic changes in dietary non-protein energy source at low and high protein levels in juvenile rainbow trout. Comp Biochem Physiol Part A Mol Integr Physiol 230: 91–99. https://doi.org/10.1016/j.cbpa.2019.01.009

Campos C, Valente LMP, Borges P, Bizuayehu T, Fernandes JMO (2010) Dietary lipid levels have a remarkable impact on the expression of growth-related genes in Senegalese sole (Solea senegalensis Kaup). J Exp Biol 213: 200–209. https://doi.org/10.1242/jeb.033126

Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209(12): 2249–2264. https://doi.org/10.1242/jeb.02153

Reinecke M, Björnsson BT, Dickhoff WW, McCormick SD, Navarro I, Power DM, Gutiérrez J (2005) Growth hormone and insulin-like growth factors in fish: Where we are and where to go. Gen Compar Endocrinol 142(1–2): 20–24. https://doi.org/10.1016/j.ygcen.2005.01.016

Gabillard JC, Biga PR, Rescan PY, Seiliez I (2013) Revisiting the paradigm of myostatin in vertebrates: Insights from fishes. Gen Comp Endocrinol 194: 45–54. https://doi.org/10.1016/j.ygcen.2013.08.012

Ostbye T-K, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen O (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268:5249–5257. https://doi.org/10.1046/j.0014-2956.2001.02456.x

Johansen KA, Overturf K (2005) Quantitative expression analysis of genes affecting muscle growth during development of rainbow trout (Oncorhynchus mykiss). Marine Biotechnol 7(6): 576–587. https://doi.org/10.1007/s10126-004-5133-3

Johansen KA, Overturf K (2006) Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout. Comp Biochem Physiol Part B 144: 119–127. https://doi.org/10.1016/j.cbpb.2006.02.001

Valente LM, Cabral EM, Sousa V, Cunha LM, Fernandes JM (2016) Plant protein blends in diets for Senegalese sole affect skeletal muscle growth, flesh texture and the expression of related genes. Aquaculture 453: 77–85. https://doi.org/10.1016/j.aquaculture.2015.11.034

Weber GM, Ma H, Birkett J, Cleveland BM (2022) Effects of feeding level and sexual maturation on expression of genes regulating growth mechanisms in rainbow trout (Oncorhynchus mykiss). Aquaculture 551: 737917. https://doi.org/10.1016/j.aquaculture.2022.737917

Björnsson BT, Thorarensen H, Hirano T, Ogasawara T, Kristinsson JB (1989) Photoperiod and temperature affect plasma growth hormone levels, growth, condition factor and hypoosmoregulatory ability of juvenile Atlantic salmon (Salmo salar) during parr-smolt transformation. Aquaculture 82(1–4): 77–91. https://doi.org/10.1016/0044-8486(89)90397-9

Boeuf G, Le Bail PY (1999) Does light have an influence on fish growth? Aquaculture 177(1–4): 129–152. https://doi.org/10.1016/S0044-8486(99)00074-5

Migaud H, Davie A, Taylor JF (2010) Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. J Fish Biol 76(1): 27–68. https://doi.org/10.1111/j.1095-8649.2009.02500.x

Taylor JF, North BP, Porter MJR, Bromage NR, Migaud H (2006) Photoperiod can be used to enhance growth and improve feeding efficiency in farmed rainbow trout, Oncorhynchus mykiss. Aquaculture 256(1–4): 216–234. https://doi.org/10.1016/j.aquaculture.2006.02.027

Sonmez AY, Hisar O, Hisar SA, Alak G, Aras MS, Yanik T (2009) The effects of different photoperiod regimes on growth, feed conversion rate and survival of rainbow trout (Oncorhynchus mykiss) fry. J Anim Vet Adv 8(4): 760–763. https://doi.org/10.5829/idosi.wasj.2013.21.10.2700

Villamizar N, Blanco-Vives B, Migaud H, Davie A, Carboni S, Sanchez-Vazquez FJ (2011) Effects of light during early larval development of some aquaculturedteleosts: a review. Aquaculture 315(1–2): 86–94. https://doi.org/10.1016/j.aquaculture.2010.10.036

Bjornsson BT (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiology and Biochemistry 17: 9–24. https://doi.org/10.1023/a:1007712413908

Taylor JF, Migaud H, Porter MJR, Bromage NR (2005) Photoperiod influences growth rate and plasma insulin-like growth factor-I levels in juvenile rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 142(1–2): 169–185. https://doi.org/10.1016/j.ygcen.2005.02.006

Johnston IA, Manthri S, Smart A, Campbell P, Nickell D, Alderson R (2003) Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation. J Exp Biol 206(19): 3425–3435. https://doi.org/10.1242/jeb.00577

Churova MV, Shulgina NS, Kuritsyn AE, Krupnova MY, Nemova NN (2020) Muscle-specific gene expression and metabolic enzyme activities in Atlantic salmon Salmo salar L. fry reared under different photoperiod regimes. Comp Biochem Physiol Part B 239: 110330. https://doi.org/10.1016/j.cbpb.2019.110330

Shulgina NS, Churova MV, Murzina SA, Krupnova MY, Nemova NN (2021) The Effect of Continuous Light on Growth and Muscle-Specific Gene Expression in Atlantic Salmon (Salmo salar L.) Yearlings. Life 11(4): 328. https://doi.org/10.3390/life11040328

Shulgina NS, Kuznetsova MV, Nemova NN (2022) The effect of different lighting regimes on some molecular-genetic parameters of juvenile atlantic salmon’s (Salmo salar) muscle growth under artificial reproduction conditions. Russ J Dev Biol 53(6): 472–489. https://doi.org/10.1134/S106236042206008X

Murzina SA, Provotorov DS, Voronin VP, Kuznetsova MV, Kuritsyn AE, Nemova NN (2023) Parameters of Lipid Metabolism in Underyearlings of the Atlantic Salmon Salmo salar Reared under Different Regimes of the Photoperiod and Feeding Modes in Aquaculture in the Southern Region of Russia. Biol Bull 50(2): 121–134. https://doi.org/10.1134/S1062359022700121.

Kuznetsova MV, Rodin MA, Shulgina NS, Krupnova MY, Kuritsin AE, Murzina SA, Nemova NN (2023) The Influence of Different Lighting and Feeding Regimes on the Activity of Metabolic Enzymes in Farmed Atlantic Salmon Fingerlings. Russ J Dev Biol 54(2): 147–155. https://doi.org/ 10.1134/S1062360423020030

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25(4): 402–408. https://doi.org/10.1006/meth.2001.1262

Almeida FLA, Carvalho RF, Pinhal D, Padovani CR, Martins C, Dal Pai-Silva M (2008) Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases. Micron 39: 1306–1311. https://doi.org/10.1016/j.micron.2008.02.011

Nagasawa K, Giannetto A, Fernandes JM (2012) Photoperiod influences growth and mll (mixed-lineage leukaemia) expression in Atlantic cod. PLoSOne 7(5): e36908. https://doi.org/10.1371/journal.pone.0036908

Churova MV, Meshcheryakova OV, Veselov AE, Efremov DA, Nemova NN (2017) Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo Salar L. of different age groups. Fish Physiol Biochem 43: 1117–1130. https://doi.org/10.1007/s10695-017-0357-0.

Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275(51): 40235–40243. https://doi.org/10.1074/jbc.M004356200

Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51): 49831–49840. https://doi.org/10.1074/jbc.M204291200

Vong QP, Chan KM, Cheng CH (2003) Quantification of common carp (Cyprinus carpio) igf1 and igf2 mRNA by real-time PCR: differential regulation of expression by GH. J Endocrinol 178(3): 513–521. https://doi.org/10.1677/joe.0.1780513

Fox BK, Breves JP, Hirano T, Grau EG (2009) Effects of short- and long-term fasting on plasma and stomach ghrelin, and the growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Domest Anim Endocrinol 37(1): 1–11. https://doi.org/10.1016/j.domaniend.2009.01.001

Vélez EJ, Lutfi E, Azizi Sh, Montserrat N, Riera Codina M, Capilla E, Navarro I, Gutiérrez J (2016) Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comp Biochem Physiol B 199: 67–73. https://doi.org/10.1016/j.cbpb.2015.12.003

Jiménez-Amilburu V, Salmerón C, Codina M, Navarro I, Capilla E, Gutiérrez J (2013) Insulin-like growth factors effects on the expression of myogenic regulatory factors in gilthead sea bream muscle cells. Gen Comp Endocrinol 188: 151–158. https://doi.org/10.1016/j.ygcen.2013.02.033

Bower NI, Li X, Taylor R, Johnston IA (2008) Switching to fast growth: the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon. J Exp Biol 211: 3859–3870. https://doi.org/10.1242/jeb.024117

Gabillard JC, Kamangar BB, Montserrat N (2006) Coordinated regulation of the GH/IGF system genes during refeeding in rainbow trout (Oncorhynchus mykiss). J Endocrinol 191: 15–24. https://doi.org/10.1677/joe.1.06869

Fox BK, Breves JP, Davis LK, Pierce AL, Hirano T, Grau EG (2010) Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: importance of muscle expression of igf1 and igf2 mRNA in the tilapia. Gen Comp Endocrinol 166: 573–580. https://doi.org/10.1016/j.ygcen.2009.11.012