НЕКОТОРЫЕ КОМПОНЕНТЫ СЕРОТОНИНЕРГИЧЕСКОЙ СИСТЕМЫ В ГЛАЗАХ ДВУХ ВИДОВ ПРЕСНОВОДНЫХ МОЛЛЮСКОВ
PDF

Ключевые слова

Lymnaea stagnalis
Pomacea canaliculata
сетчатка
серотонин
иммунореактивность
транскрипция генов
рецепторы 5-HT
транспортер серотонина

Аннотация

Выполнено маркирование 5-НТ-иммунореактивных структур на срезах глаз пресноводных моллюсков Lymnaea stagnalis и Pomacea canaliculata. В периокулярной области животных обоих видов обнаружена повышенная плотность 5-НТ-ергических волокон, образующих структурно выраженные сплетения и частично проникающих в сетчатку. В тканях глаза обнаружена транскрипция генов рецепторов серотонина: двух типов у L. stagnalis и трех - у P. canaliculata. Ее относительный уровень статистически значимо превышает этот показатель в центральных ганглиях нервной системы и щупальцах. Дополнительно в тканях P. canaliculata была зафиксирована транскрипция гена транспортера 5-НТ. Полученные результаты обсуждаются с позиций возможного серотонинергического механизма модуляции процессов в сетчатке у брюхоногих моллюсков.

PDF

Литература

Tierney AJ (2018) Invertebrate serotonin receptors: a molecular perspective on classification and pharmacology. J Exp Biol 221(Pt 19):jeb184838. s://doi.org/10.1242/jeb.184838

Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P (2020) Serotonin in Animal Cognition and Behavior. Int J Mol Sci 21(5):1649. s://doi.org/10.3390/ijms21051649

Sizemore TR, Hurley LM, Dacks AM (2020) Serotonergic modulation across sensory modalities. J Neurophysiol 123(6):2406–2425. s://doi.org/10.1152/jn.00034.2020

Yamoah EN, Crow T (1996) Protein kinase and G-protein regulation of Ca2+ currents in Hermissenda photoreceptors by 5-HT and GABA. J Neurosci 16(15):4799–4809. s://doi.org/10.1523/JNEUROSCI.16-15-04799.1996

Razy-Krajka F, Brown ER, Horie T, Callebert J, Sasakura Y, Joly JS, Kusakabe TG, Vernier P. (2012) Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC Biol 10:45. s://doi.org/10.1186/1741-7007-10-45

Colwell CS (1990) Light and serotonin interact in affecting the circadian system of Aplysia. J Comp Physiol A 167(6):841–845. s://doi.org/10.1007/BF00189772.

Masson J (2019) Serotonin in retina. Biochimie 161:51–55. s://doi.org/10.1016/j.biochi.2018.11.006.

Kito-Yamashita T, Haga C, Hirai K, Uemura T, Kondo H, Kosaka K (1990) Localization of serotonin immunoreactivity in cephalopod visual system. Brain Res 521(1-2):81–88. s://doi.org/10.1016/0006-8993(90)91527-n.

Takahashi JS, Nelson DE, Eskin A (1989) Immunocytochemical localization of serotonergic fibers innervating the ocular circadian system of Aplysia. Neuroscience 28(1):139–147. s://doi.org/10.1016/0306-4522(89)90238-8.

Michel S, Schoch K, Stevenson PA (2000) Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol 425(2):244–256. s://doi.org/10.1002/1096-9861(20000918)425:2

Zhukov VV (2007) On the problem of retinal transmitters of the freshwater mollusc Lymnaea stagnalis. J Evol Biochem Phys 43:524–532. s://doi.org/10.1134/S0022093007050118

Zhukov VV, Tuchina OP, Meyer-RochowVB (2012) Serotonin immunoreactivity in the eye and optic nerve of pulmonate gastropod molluscs. J Evol Biochem Phys 48:471–473. s://doi.org/10.1134/S0022093012040123

Sugamori KS, Sunahara RK, Guan HC, Bulloch AG, Tensen CP, Seeman P, Niznik HB, Van Tol HH (1993) Serotonin receptor cDNA cloned from Lymnaea stagnalis. Proc Natl Acad Sci U S A 90(1):11–15. s://doi.org/10.1073/pnas.90.1.11

Gerhardt CC, Leysen JE, Planta RJ, Vreugdenhil E, Van Heerikhuizen H (1996) Functional characterisation of a 5-HT2 receptor cDNA cloned from Lymnaea stagnalis. Eur J Pharmacol 311(2-3):249–258. s://doi.org/10.1016/0014-2999(96)00410-4

Benatti C, Colliva C, Blom JMC, Ottaviani E, Tascedda F (2017) Transcriptional effect of serotonin in the ganglia of Lymnaea stagnalis. ISJ 14(1):251–258. s://doi.org/10.25431/1824-307X/isj.v14i1.251-258

OligoArchitectTM Online. Glossary of Parameters. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documen ts/200/845/oligo-architect-glossary-br3011en-mk.pdf. (Date of address: 17.11.2022)

Young AP, Landry CF, Jackson DJ, Wyeth RC (2019). Tissue-specific evaluation of suitable reference genes for RT-qPCR in the pond snail, Lymnaea stagnalis. PeerJ 7:e7888. s://doi.org/10.7717/peerj.7888

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. s://doi.org/10.1006/meth.2001.1262

Gillette R (2006) Evolution and function in serotonergic systems. Integr Comp Biol 46(6):838–846. s://doi.org/10.1093/icb/icl024

Longley RD, Peterman M (2013) Neuronal control of pedal sole cilia in the pond snail Lymnaea stagnalis appressa. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 99(1):71–86. s://doi.org/10.1007/s00359-012-0770-x

Aonuma H, Mezheritskiy M, Boldyshev B, Totani Y, Vorontsov D, Zakharov I, Ito E, Dyakonova V (2020) The Role of Serotonin in the Influence of Intense Locomotion on the Behavior Under Uncertainty in the Mollusk Lymnaea stagnalis. Front Physiol 11:221. s://doi.org/10.3389/fphys.2020.00221

Жуков ВВ, Кононенко НЛ, Панормов ИБ., Борисенко ИЛ (2006) Серотонин изменяет электрические реакции глаза Lymnaea stagnalis на световую стимуляцию. Сенсорные системы 20(4): 270–278. [Zhukov VV, Kononenko NL, Panormov IB, Borisenko IL (2006) Serotonin izmenyaet elektricheskie reakcii glaza Lymnaea stagnalis na svetovuyu stimulyaciyu. Sensornye sistemy 20(4): 270-–278. (In Russ)].

Aonuma H, Totani Y, Sakakibara M, Lukowiak K, Ito E (2018) Comparison of brain monoamine content in three populations of Lymnaea that correlates with taste-aversive learning ability. Biophys Physicobiol 15:129–135. s://doi.org/10.2142/biophysico.15.0_129.

Horváth R, Battonyai I, Maász G, Schmidt J, Fekete ZN, Elekes K (2020) Chemical-neuroanatomical organization of peripheral sensory-efferent systems in the pond snail (Lymnaea stagnalis). Brain Struct Funct 225(8):2563–2575. s://doi.org/10.1007/s00429-020-02145-z

Ivashkin EG, Khabarova MYu, Melnikova VI, Kharchenko OA, Voronezhskaya EE (2017) Local serotonin-immunoreactive plexus in the female reproductive system of hermaphroditic gastropod mollusc Lymnaea stagnalis. Invertebrate Zoology14(2):134–139. s://doi.org/10.15298/invertzool.14.2.06

Azmitia EC (2007) Serotonin and brain: evolution, neuroplasticity, and homeostasis. Int Rev Neurobiol 77:31–56. s://doi.org/10.1016/S0074-7742(06)77002-7

Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP (2006) The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. Brain Res Rev 52(1):1–57. s://doi.org/10.1016/j.brainresrev.2005.11.00

Rodríguez-Sosa L, Calderón-Rosete G, Villalobos MGP, Mendoza Zamora E, González VA (2006) Serotonin modulation of caudal photoreceptor in crayfish. Comp Biochem Physiol C Toxicol Pharmacol 142(3-4):220–230. s://doi.org/10.1016/j.cbpc.2005.10.006

Aréchiga H, Bañuelos E, Frixione E, Picones A, Rodríguez-Sosa L (1990) Modulation of crayfish retinal sensitivity by 5-hydroxytryptamine. J Exp Biol 150:123–143. s://doi.org/10.1242/jeb.150.1.123

Calderón-Rosete G, Flores G, Rodríguez-Sosa L (2006) Diurnal rhythm in the levels of the serotonin 5-HT1A receptors in the crayfish eyestalk. Synapse 59(6):368–373. s://doi.org/10.1002/syn.20252

Chen B, Meinertzhagen IA, Shaw SR (1999) Circadian rhythms in light-evoked responses of the fly's compound eye, and the effects of neuromodulators 5-HT and the peptide PDF. J Comp Physiol A 185(5):393–404. s://doi.org/10.1007/s003590050400

Muñoz JL, López Patiño MA, Hermosilla C, Conde-Sieira M, Soengas JL, Rocha F, Míguez JM (2011) Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(8):789–797. s://doi.org/10.1007/s00359-011-0641-x

Crow T, Bridge MS (1985) Serotonin modulates photoresponses in Hermissenda type-B photoreceptors. Neurosci Lett 60(1):83–88. s://doi.org/10.1016/0304-3940(85)90385-4

Farley J, Wu R (1989) Serotonin modulation of Hermissenda type B photoreceptor light responses and ionic currents: implications for mechanisms underlying associative learning. Brain Res Bull 22(2):335–351. s://doi.org/10.1016/0361-9230(89)90061-0

Grover LM, Farley J, Auerbach SB (1989) Serotonin involvement during in vitro conditioning of Hermissenda. Brain Res Bull 22(2):363–372. s://doi.org/10.1016/0361-9230(89)90063-4

Seyer JO, Nilsson DE, Warrant E (1998) Spatial vision in the prosobranch gastropod Ampularia sp. J Exp Biol 201 (Pt 10):1673–1679. s://doi.org/10.1242/jeb.201.10.1673

Zieger MV, Meyer-Rochow VB (2008) Understanding the cephalic eyes of pulmonate gastropods: A review. Amer Malac Bull 26: 47–66. s://doi.org/10.4003/006.026.0206

Block GD, Khalsa SB, McMahon DG, Michel S, Guesz M (1993) Biological clocks in the retina: cellular mechanisms of biological timekeeping. Int Rev Cytol146:83–144. s://doi.org/10.1016/s0074-7696(08)60381-2

Zhukov VV, Tuchina, OP (2008) Structure of visual pathways in the nervous system of freshwater pulmonate molluscs. J Evol Biochem Phys 44:341–353. s://doi.org/10.1134/S0022093008030113

Zaitseva OV (1994) Structural organization of the sensory systems of the snail. Neurosci Behav Physiol 24(1):47–57. s://doi.org/10.1007/BF02355652