ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ЛИПИДНОГО ЭКСТРАКТА МОРСКОЙ ЗЕЛЕНОЙ ВОДОРОСЛИ CODIUM FRAGILE (SURINGAR) HARIOT ДЛЯ РЕПАРАЦИИ МЕМБРАН ЭРИТРОЦИТОВ МЫШЕЙ ПРИ СТРЕССОВОМ ВОЗДЕЙСТВИИ
PDF

Ключевые слова

Ключевые слова: липидный экстракт, Codium fragile, Омега-3, стресс, эритроциты, фосфолипиды, мыши.

Аннотация

Кодиум ломкий – Codium fragile (Suringar) Hariot – морская зеленая водоросль, относящаяся к семейству Codiaceae, является одним из массовых видов макрофитов Дальневосточного Региона РФ. Содержание липидов в талломе кодиума достигает 13.92 ± 0.22 мг в пересчете на г сухой ткани, из которых основную часть составляют нейтральные липиды и гликолипиды (40 - 44%), на долю фосфолипидов приходится 16%. Количество полиненасыщенных жирных кислот (ПНЖК) в липидном экстракте кодиума составляет свыше 50% от общей суммы, среди которых преобладают ПНЖК семейства ω-3 (36.2%) и ω-6 (17.8%). Изучено влияние липидного экстракт C. fragile и препарата сравнения Омега-3 на биохимические и физиологические показатели эритроцитов мышей, подвергнутых стрессовому воздействию (вертикальная фиксация за дорсальную шейную складку). Под действием стресса эритроциты претерпевают определенные изменения, как в отношении размерных характеристик, так и фосфолипидной составляющей мембран, что приводит к изменению проницаемости и лабильности, осложняется их циркуляция по капиллярному руслу. Эндогенная система антиоксидантной защиты организма мышей при стрессе испытывает значительное напряжение, о чем свидетельствует увеличение уровня малонового диальдегида при одновременном снижении активности супероксиддисмутазы и величины антирадикальной активности в плазме крови. Введение липидного экстракта C. fragile в условиях стресса сопровождалось восстановлением содержания липидов в мембранах эритроцитов, уменьшением количества лизофосфолипидов, а также нормализацией соотношения сфингомиелин/фосфатидилхолин, что способствовало восстановлению размерных параметров эритроцитов, их осмотической резистентности и показателей антиоксидантной системы крови. Выраженный мембранопротекторный эффект липидного экстракта C. fragile обусловлен наличием в его составе широкого спектра нейтральных и полярных липидов, содержащих ПНЖК семейства ω -3 и ω -6, что обеспечивает более высокую эффективность водорослевого экстракта при стрессе по сравнению с эталонным препаратом "Омега-3"

https://doi.org/10.31857/S0044452924010067
PDF

Литература

Perez MJ, Falque E, Dominguez H (2016) Antimicrobial Action of Compounds from Marine Seaweed. Mar Drugs 14: 52. https://doi.org/10.3390/md14030052

Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegaz MF, Moustafa MS, Abd El-Wahed A, Al-Mousawi SM, Musharraf SG (2019) Marine Natural Products: A Source of Novel Anticancer. Mar Drugs 17: 491. https://doi.org/10.3390/md17090491

Agatonovic-Kustrin S, Morton DW, Ristivojević P (2016) Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis. J Chromatogr A 1468: 228. https://doi.org/10.1016/j.chroma.2016.09.041

Cherif W, Ktari L, Bour MEl, Boudabous A, Grignon-Dubois M (2016) Codium fragile subsp. fragile (Suringar) Hariot in Tunisia: morphological data and status of knowledge. Algae 31: 129. http://dx.doi.org/10.4490/algae.2016.31.4.17

Титлянов ЭА, Титлянова ТВ (2012) Морские растения стран Азиатско–Тихоокеанского региона, их использование и культивирование. Владивосток: Дальнаука. [Titlyanov EA, Titlyanova TV (2012) Marine plants of the countries of the Asia-Pacific region, their use and cultivation. Vladivostok: Dalnauka (In Russ)].

Ahn J, Kim MJ, Yoo A, Ahn J, Ha T, Jung C.H, Seo HD, Jang YJ (2021). Identifying Codium fragile extract components and their effects on muscle weight and exercise endurance. Food Chemistry 353: 129463. https://doi.org/10.1016/j.foodchem.2021.129463

Kolsi RBA, Salah HB, Hamza A, El feki A, Allouche N, El feki L, Belguith K (2017) Characterization and evaluating of antioxidant and antihypertensive properties of green alga (Codium fragile) from the coast of Sfax. J Pharmacogn Phytochem 6: 186.

Kolsi RBA, Jardak N, Hajkacem F, Chaaben R, Jribi I, Feki AE, Rebai T, Jamoussi K, Fki L, Belghith H, Belghith K (2017) Anti-obesity effect and protection of liver-kidney functions by Codium fragile sulphated polysaccharide on high fat diet induced obese rats. Int J Biol Macromol 102: 119. https://doi.org/10.1016/j.ijbiomac.2017.04.017

Park H-B, Hwang J, Zhang W, Go S, Kim J, Choi I, You SG, Jin J-O (2020) Polysaccharide from Codium fragile Induces Anti-Cancer Immunity by Activating Natural Killer Cells. Mar Drugs 18: 626. https://doi.org/10.3390/md18120626

Lee C, Park GH, Ahn EM, Kim BA, Park CI, Jang JH (2013) Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia 86: 54.

Fomenko SE, Kushnerova NF, Sprygin VG, Drugova ES, Lesnikova LN, Merzlyakov VY, Momot TV (2019) Lipid Composition, Content of Polyphenols, and Antiradical Activity in Some Representatives of Marine Algae. Russ J Plant Physiol 66: 942–949.

Goecke F, Hernandez V, Bittner M, Gonzalez M, Becerra J, Silva M (2010) Fatty acid composition of three species of Codium (Bryopsidales, Chlorophyta) in Chile. Rev Biol Marin Oceanograf 45: 325.

Caccamese S, Azzolina D, Furnari G, Cormaci M, Grasso S (1981) Antimicrobial and antiviral activities of some marine algae from eastern Sicily. Botanic Marin 24: 365. http://dx.doi.org/10.1515/botm.1981.24.7.365.

Dembitsky VM, Rezankova H, RezankaT, Hanus LO (2003) Variability of the fatty acids of the marine green algae belonging to the genus Codium. Biochem Systemat Ecol 31: 1125. https://doi.org/10.1016/s0305-1978(03)00043-7

Jump DB, Depner CM, Tripathy S, Lytle KA (2015) Potential for Dietary omega-3 Fatty Acids to Prevent Nonalcoholic Fatty Liver Disease and Reduce the Risk of Primary Liver Cancer. Adv Nutr 6: 694–702. https://doi.org/10.3945/an.115.009423.

Sanhueza J, Nieto SK, Valenzuela AB (2002) Conjugated linoleic acid: a trans isomer fatty acid potentially beneficial. Revist Chilen Nutrición 29: 98–105.

Komal F, Khan MK, Imran M, Ahmad MH, Anwar H, Ashfaq UA, Ahmad N, Masroor A, Ahmad RS, Nadeem M, Nisa MU (2020) Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model. J Transl Med 18: 349. https://doi.org/10.1186/s12967-020-02519-1

Ortiz J, Uquiche E, Robert P, Romero N, Quitral V, Llantén C (2009) Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur J Lipid Sci Technol 111: 320. https://doi.org/10.1002/ejlt.200800140.

Хотимченко СВ (2003) Липиды морских водорослей-макрофитов и трав. Структура, распределение, анализ. Владивосток: Дальнаука. [Khotimchenko SV (2003) Lipids of marine algae-macrophytes and herbs. Structure, distribution, analysis. Vladivostok: Dalnauka. (In Russ)].

Кушнерова НФ, Спрыгин ВГ, Фоменко СЕ, Рахманин ЮА (2005) Влияние стресса на состояние липидного и углеводного обмена печени, профилактика. Гиг санитар 5: 17–21. [Kushnerova NF, Sprygin VG, Fomenko SE, Rakhmanin YuA (2005) Impact of stress on hepatic lipid and carbohydrate metabolism, prevention. Hyg Sanit 5: 17–21. (In Russ)] .

Sahin E, Gumuёslu S (2007) Stress-dependent induction of protein oxidation, lipid peroxidation and anti-oxidants in peripheral tissues of rats: comparison of three stress models (immobilization, cold and immobilization-cold). Clin Exp Pharmacol Physiol 34: 425–431. https://doi.org/10.1111/j.1440-1681.2007.04584.x.

Kovacs P, Juranek I, Stankovicova T, Svec P (1996) Lipid peroxidation during acute stress. Pharmazie 51: 51–53.

Морозова ВТ, Луговская СА, Почтарь МЕ (2007) Эритроциты: структура, функции, клинико-диагностическое значение. Клин лаб диагн 10: 21–35. [Morozovа TV, Lugovskaya SA, Pochtar ME (2007) Red blood cells: structure, function, clinical and diagnostic value. Klin Lab Diagn 10: 21–35. (In Russ)].

Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917.

Vaskovsky VE, Khotimchenko SV (1982) HPTLC of Polar Lipids of Algae and Other Plants J Chromatography 5: 635–636. https://doi.org/10.1002/jhrc.1240051113.

Van Gent CM, Roseleur OJ, Van Der Bijl P (1973) The detection of cerebrosides on thin-layer chromatograms with an anthrone spray reagent. J Chromatogr 85: 174–176.

Vascovsky VE, Kostetsky EY, Vasendin IM (1975) Universal Reagent for Phospholipid Analysis J Chromatography 114: 129–141. https://doi.org/10.1016/S0021-9673 (00)85249-8.

Amenta JS (1964) A rapid chemical method for quantification of lipids separated by thin-layer chromatography. J Lipid Res 5: 270–272. https://doi.org/10.1016/S0022-2275 (20)40251-2.

Carreau JP, Dubacq JP (1978) Adaptation of a macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J Chromatogr 151: 384–390. https://doi.org/10.1016/S0021-9673(00)88356-9.

Christie WW (1988) Equivalent chain-lengths of methyl ester derivatives of fatty acids on gas chromatography A reappraisal. J Chromatogr 447: 305–314.

Новгородцева ТП, Караман ЮК, Бивалькевич НВ, Жукова НВ (2010) Использование биологически активной добавки к пище на основе липидов морских гидробионтов в эксперименте на крысах. Вопр питан 79: 24–27. [Novgorodtseva TP, Karaman YuK, Bivalkevich NV, Zhukova NV (2010) The use of biologically active food supplements based on lipids of marine aquatic organisms in an experiment on rats. Probl Nutrition 79: 24–27. (In Russ)].

Меньшиков ВВ (ред) (1987) Лаб мет исслед клин. М.: Медицина. [Menshikov VV (ed.) (1987) Lab Res Methe Clinic M.: Medicine. (In Russ)].

Bartosz G, Janaszewska A, Ertel D, Bartosz M (1998) Simple determination of peroxyl radical-trapping capacity. Biochem Mol Biol Int 46: 519–528. https://doi.org/10.1080/15216549800204042.

Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide-dismutase activity in tissue-extracts. Analyt Biochem 154: 536–541. https://doi.org/10.1016/0003-2697(86)90026-6.

Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods in Enzymology. N.Y.: Academic Press 52: 302–310.

Adibhatla RM, Hatcher JF (2008) Phospholipase A2, reactive oxygen species, and lipidperoxidation in CNS pathologies. BMB reports 41: 560–567. https://doi.org/10.5483/bmbrep.2008.41.8.560

Cumming DS, Mchowat J, Schnellmann RG (2000) Phospholipase À2s in cell injury and death. J Pharmacol Experim Therapeutic 294: 793–799.

Shevchenko OG, Shishkina LN (2011) Comparative analysis of phospholipid composition in blood erythrocytes of various species of mouse-like rodents. J Evol Biochem Physiol 47: 179–186 https://doi.org/10.1134/s0022093011020071

Zabelinskii SA, Chebotareva MA, Shukolyukova EP, Krivchenko AI (2017) Phospholipids, fatty acids and hemoglobin in rat erythrocytes under stress conditions (swimming at low temperature). J Evol Biochem Physiol 53:17–24. https://doi.org/10.1134/s0022093017010021

Garrel C, Alessandri J-M, Guesnet P, Al-Gubory KH (2012) Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development. Int J Biochem Cell Biol 44: 123–131. https://doi.org/10.1016/j.biocel.2011.10.007

Richard D, Kefi K, Barbe U, Bausero P, Visioli F (2008) Polyunsaturated fatty acids as antioxidants. Pharmacol Res 57: 451–455. https://doi.org/10.1016/j.phrs.2008.05.002