Аннотация
В экспериментах на крысах исследовалось участие со-медиаторов симпатической нервной системы в угнетающем влиянии глубокого охлаждения на антителообразующую функцию селезенки. Изучалось: 1) воздействие глубокого охлаждения (снижение глубокой температуры на 3-4ºС), 2) введение медиатора симпатической нервной системы норадреналина (НА, 1 мг/мл), 3) его со-медиатора АТФ (0.01 мг/мл и 10 мг/мл) и 4) блокатора P2X-пуринергических рецепторов PPADS на количество антителообразующих клеток селезенки в ответ на иммунизацию эритроцитами барана. Глубокое охлаждение и АТФ угнетали, тогда, как НА стимулировал антителообразование в селезенке. Блокада P2X-пуринергических рецепторов с помощью PPADS стимулировала антителообразование в норме. На фоне блокады P2X-пуринергических рецепторов угнетающее действие АТФ и глубокого охлаждения на антителообразование не проявлялось. Полученные результаты свидетельствуют о разнонаправленном влиянии со-медиаторов симпатической нервной системы на антителообразование в селезенке и позволяют считать, что угнетающее действие холода на антителообразование в селезенке происходит с участием АТФ через P2X пуринергические рецепторы.
Литература
Hu GZ, Yang SJ, Hu WX, Wen Z, He D, Zeng LF, Xiang Q, Wu XM, Zhou WY, Zhu QX (2016) Effect of cold stress on immunity in rats. Exp Therapeut Med 11(1): 33–42. s://doi.org/10.3892/etm.2015.2854
Vialard F, Olivier M (2020) Thermoneutrality and immunity: how does cold stress affect disease? Front Immunol 11: 588387. s://doi.org/10.3389/fimmu.2020.588387
Kozyreva TV, Eliseeva LS (2000) Immune response in cold exposures of different types. J Thermal Biol 25 (5): 401–404. s://doi.org/10.1016/S0306-4565(99)00113-8
Kozyreva TV, Gonsales EV, Eliseeva LS (2004) β-adrenoreceptor participation in the formation of the thermoregulatory and immune responses under the effect of rapid deep cooling. J Therm Biol 29(7-8): 819–824. s://doi.org/10.1016/j.jtherbio.2004.08.077
Kozyreva TV, Tkachenko EY, Kozaruk VP, Latysheva TV, Gilinsky MA (1999) Effects of slow and rapid cooling on catecholamine concentration in arterial plasma and the skin. Am J Physiol 276(6): R1668–72. s://doi.org/10.1152/ajpregu.1999.276.6.R1668
Brazaitis M, Eimantas N, Daniuseviciute L, Mickeviciene D, Steponaviciute R, Skurvydas A (2014) Two Strategies for Response to 14°C Cold-Water Immersion: Is there a Difference in the Response of Motor, Cognitive, Immune and Stress Markers? PLoS ONE 9(10): e109020. s://doi.org/10.1371/journal.pone.0109020
Gagnon DD, Gagnon SS, Rintamäki H, Törmäkangas T, Puukka K, Herzig KH, Kyröläinen H (2014) The effects of cold exposure on leukocytes, hormones and cytokines during acute exercise in humans. PLoS One 9(10): e110774. s://doi.org/10.1371/journal.pone.0110774
Alba BK, Castellani JW, Charkoudian N (2019) Cold‐induced cutaneous vasoconstriction in humans: Function, dysfunction and the distinctly counterproductive. Experimental physiology 104(8): 1202–1214. s://doi.org/10.1113/EP087718
Eliseeva LS, Chramova GM, Gonsales EB, Kozyreva TV (2009) α1- and β-Adrenoblockers Effects on Immunogenesis in Rats under Thermoneutral Conditions and after Cooling of Various Extent. Bull Exp Biol Med 147: 208–212. s://doi.org/10.1007/s10517-009-0476-4
Gein SV, Karnaukhova AV (2022) The Role of β-Adrenergic Receptors in the Regulation of the Functions of Innate Immune Cells during Cold Stress In Vivo. Bulletin of Exp Biol Med 173(1): 72-76. s://doi.org/10.1007/s10517-022-05496-1
Townsend AD, Wilken GH, Mitchell KK, Martin RS, Macarthur H (2016) Simultaneous analysis of vascular norepinephrine and ATP release using an integrated microfluidic system. J Neurosci Method 266: 68–77. s://doi.org/10.1016/j.jneumeth.2016.03.015
Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circulation research 120(1): 207–228. s://doi.org/10.1161/CIRCRESAHA.116.309726
Burnstock G (2020) Introduction to purinergic signalling in the brain. Glioma signaling: 1–12. s://doi.org/10.1007/978-3-030-30651-9_1
Kennedy C (2021) ATP as a cotransmitter in sympathetic and parasympathetic nerves-another Burnstock legacy. Autonomic Neuroscience 235: 102860. s://doi.org/10.1016/j.autneu.2021.102860
Burnstock G (2020) Introduction to Purinergic Signaling. Methods Mol Biol 2041: 1–15. s://doi.org/10.1007/978-1-4939-9717-6_1
Haskó G, Szabó C (1998) Regulation of cytokine and chemokine production by transmitters and co-transmitters of the autonomic nervous system. Biochem Pharmacol 56(9): 1079–1087. s://doi.org/10.1016/S0006-2952(98)00153-1
Pongratz G, Straub RH (2014) The sympathetic nervous response in inflammation. Arthritis research & therapy 16: 1–12. s://doi.org/10.1186/s13075-014-0504-2
Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16(3): 177–192. s://doi.org/10.1038/nri.2016.4
Cho JH, Jung KY, Jung Y, Kim MH, Ko H, Park CS, Kim YC (2013) Design and synthesis of potent and selective P2X₃ receptor antagonists derived from PPADS as potential pain modulators. Eur J Med Chem 70: 811–830. s://doi.org/10.1016/j.ejmech.2013.10.026
Huo H, Fryatt AG, Farmer LK, Schmid R, Evans RJ (2018) Mapping the binding site of the P2X receptor antagonist PPADS reveals the importance of orthosteric site charge and the cysteine-rich head region. J Biol Chem 293(33): 12820–12831. s://doi.org/10.1074/jbc.RA118.003737
Шварцман ЯС (1966) Изучение синтеза антител одиночными клетками к растворимым белкам. Бюллетень экспериментальной биологии и медицины 12: 88–92. [Shvartsman YaS (1966) Study of the synthesis of antibodies by single cells to soluble proteins. Bulletin of Experimental Biology and Medicine 12: 88–92. (In Russ)].
Козлов ВА, Кудаева ОТ, Наумова ЕН, Елисеева ТВ (1988) Методическое руководство по применению метода локального гемолиза к статистическому оцениванию результатов. Новосибирск. СО АМН СССР: 15. [Kozlov VA, Kudaeva OT, Naumova EN, Eliseeva TV (1988) Methodological guide to the application of the method for determining hemolysis by a statistical method for evaluating results. Novosibirsk. SO AMS USSR: 15. (In Russ)].
Gein SV, Sharav’eva IL (2018) Immunomodulating effects of cold stress. Biol Bull Rev 8: 482–488. s://doi.org/10.1134/S207908641806004X
Patrakeeva VP, Basova EE (2018) Effects of Low Temperatures on the Formation of Adaptive Reactions: A Review. Internat J Biomed 8(2): 95–101. s://doi.org/10.21103/Article8(2)_RA1
Giniatullin R, Nistri A (2013). Desensitization properties of P2X3 receptors shaping pain signaling. Fron Cell Neurosci 7:245. s://doi.org/10.3389/fncel.2013.00245
Fabbretti E (2019) P2X3 receptors are transducers of sensory signals. Brain Res Bull 151: 119–124. s://doi.org/10.1016/j.brainresbull.2018.12.020
Davis CJ, Taishi P, Honn KA, Koberstein JN, Krueger JM (2016) P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. Am J Physiol Regul Integr Comp Physiol 311(6): R1004–R1012. s://doi.org/10.1152/ajpregu.00167.2016.
Di Virgilio F, Sarti AC, Grassi F (2018) Modulation of innate and adaptive immunity by P2X ion channels. Curr Opin Immunol 52: 51–59. s://doi.org/10.1016/j.coi.2018.03.026
Corriden R, Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 3: re1. s://doi.org/10.1126/scisignal.3104re1
Bao Y, Chen Y, Ledderose C, Li L, Junger WG (2013) Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem 288: 22650–22657. s://doi.org/10.1074/jbc.M113.476283
Ledderose C, Bao Y, Zhang J, Junger WG (2015) Novel method for real-time monitoring of ATP release reveals multiple phases of autocrine purinergic signalling during immune cell activation. Acta Physiol (Oxf) 213: 334–345. s://doi.org/10.1111/apha.12435
Ledderose C, Bromberger S, Slubowski CJ, Sueyoshi K, Aytan D, Shen Y, Junger WG (2020) The purinergic receptor P2Y11 choreographs the polarization, mitochondrial metabolism, and migration of T lymphocytes. Sci Signal 13: eaba3300. s://doi.org/10.1126/scisignal.aba3300
Wang X, Chen D (2018) Purinergic regulation of neutrophil function. Front Immunol 9: 399. s://doi.org/10.3389/fimmu.2018.00399
Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Duménil AM, Sáez JC (2017) ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2X(7) receptors. Sci Signal 10: eaah7107. s://doi.org/10.1126/scisignal.aah7107
Borges da Silva H, Beura LK, Wang H, Hanse EA, Gore R, Scott MC, Walsh DA, Block KE, Fonseca R, Yan Y, Hippen KL, Blazar BR, Masopust D, Kelekar A, Vulchanova L, Hogquist KA, Jameson SC (2018) The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature 559: 264–268. s://doi.org/10.1038/s41586-018-0282-0
Bao Y, Ledderose C, Graf AF, Brix B, Birsak T, Lee A, Zhang J, Junger WG (2015) mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J Cell Biol 210: 1153–1164. s://doi.org/10.1083/jcb.201503066
Takenaka MC, Robson S, Quintana FJ (2016) Regulation of the T cell response by CD39. Trends in immunology 37(7): 427–439. s://doi.org/10.1016/j.it.2016.04.009
Ledderose C, Liu K, Kondo Y, Slubowski CJ, Dertnig T, Denicoló S, Arbab M, Hubner J, Konrad K, Fakhari M, Lederer JA, Robson SC, Visner GA, Junger WG (2018) Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J Clin Invest 128: 3583–3594. s://doi.org/10.1172/JCI120972
Kozyreva TV, Meyta ES, Khramova GM (2015) Effect of the sympathetic nervous system co-transmitters ATP and norepinephrine on thermoregulatory response to cooling. Temperature 2(1): 121–128. s://doi.org/10.1080/23328940.2014.1000705
Kozyreva TV, Meyta ES, Kozaruk VP (2017) Participation of Purinergic P2X Receptors in the Thermoregulatory Response to Cooling. Bull Exp Biol Med 162(5): 606–610. s://doi.org/10.1007/s10517-017-3668-3