FUNCTIONAL SYNERGY ENSURES A TRAMPOLINE JUMP STOPPING
PDF (Русский)

Keywords

functional synergy
intermuscular interaction
motor control
variability
tactics of movement construction
trampoline jumping

Abstract

The paper considers the structure of intermuscular synergetic interaction that ensures the athlete's body stopping on the trampoline after a jump. We compared the spatio-temporal characteristics of muscle synergies extracted from the skeletal muscles electroactivity amplitude and frequency of biopotentials data. The objective of the study was to find out whether the extracted kinematic modules represent the central mechanisms for the movement structure controlling as well as to determine the variables which should be stabilized by muscle synergies activity. The extraction of synergies was carried out using the matrix factorization method. It has been established that trampoline jump stopping can be performed using common patterns of muscle synergies spatio-temporal activation. The synergistic effects obtained using different approaches of instrumental assessment of skeletal muscle electroactivity probably reflect different control mechanisms implemented at different levels of the central nervous system. Muscle synergies are aimed at the stabilizing of the certain anthropometric points movement, as well as body segments, combined into kinematic modules. The structure of the kinematic modules themselves indicates the effective organization of intermuscular interaction, indirectly reflecting the central control mechanisms of complex multi-joint movement.

https://doi.org/10.31857/S0044452923040058
PDF (Русский)

References

Мельников АА, Викулов АД, Малахов МВ (2016) Функция равновесия у спортсменов-борцов. Ярославль. ЯГПУ. [Mel'nikov AA, Vikulov AD, Malahov MV (2016) Funkciya ravnovesiya u sportsmenov-borcov. YAroslavl'. YAGPU. (In Russ)].

Gurfinkel VS, Osevets М (1972) Dynamics of the vertical posture in man. Biophysics 17: 496–506.

Gurfinkel VS, Коц ЯМ, Шик МЛ (1965) Регуляция позы человека. М. Наука. [Gurfinkel VS, Koc YaM, Shik ML (1965) Regulyaciya pozy cheloveka. M. Nauka. (In Russ)].

Александров А, Фролов А (2017) Биомеханический анализ координации позы и движения у стоящего человека при наклонах корпуса в сагиттальной плоскости. ЖВНД им ИП Павлова 67: 33–48. [Aleksandrov A, Frolov A (2017) Biomechanical analysis of the coordination of posture and movement in a standing person with body tilts in the sagittal plane. ZHVND im IP Pavlova 67: 33–48. (In Russ)]. https://doi.org/10.7868/S0044467717010038

Park E, Schöner G, Scholz J (2012) Functional synergies underlying control of upright posture during changes in head orientation. PLoS One 7(8): e41583: https://doi.org/10.1371/journal.pone.0041583

Robert T, Zatsiorsky V, Latash M (2008) Multi-muscle synergies in an unusual postural task: quick shear force production. Exp Brain Res 187(2):237–253. https://doi.org/10.1007/s00221-008-1299-7

Altenburger K, Bumke O, Foerster O (1937) Allgemeine neurologie. Handbuch der Neurologie. Berlin.

Moiseev S, Pukhov A, Mikhailova E, Gorodnichev R (2022) Methodological and Computational Aspects of Extracting Extensive Muscle Synergies in Moderate-Intensity Locomotions. J Evol Biochem Physiol 58(1):88–97. https://doi.org/10.1134/s0022093022010094.

Tresch M, Cheung V, d'Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 95(4):2199–2212. https://doi.org/10.1152/jn.00222.2005

Персон РС (1985) Спинальные механизмы управления мышечным сокращением. М. Наука. [Person RS (1985) Spinal'nye mekhanizmy upravleniya myshechnym sokrashcheniem. M. Nauka. (In Russ)].

Moiseev S, Ivanov S, Gorodnichev R (2022) The Motor Synergies' Organization Features at Different Levels of Motor Control during High Coordinated Human's Movement. J Evol Biochem Physiol 58(2):610–622. https://doi.org/10.1134/s0022093022020272

Радченко С (2011) Методология регрессионного анализа: монография. К. Корнийчук [Radchenko SG (2011) Metodologiya regressionnogo analiza: monografiya. K. Kornijchuk. (In Russ)].

Munoz-Martel V, Santuz A, Bohm S, Arampatzis A. (2021) Proactive Modulation in the Spatiotemporal Structure of Muscle Synergies Minimizes Reactive Responses in Perturbed Landings. Front Bioeng Biotechnol 9:761766. https://doi.org/10.3389/fbioe.2021.761766.

Silva PB, Oliveira AS, Mrachacz-Kersting N, Kersting UG (2018) Effects of wobble board training on single-leg landing neuromechanics. Scand J Med Sci Sports 28(3):972–982. https://doi.org/10.1111/sms.13027.

Rabbi M, Pizzolato C, Lloyd D, Carty C, Devaprakash D, Diamond L (2020) Non-negative matrix factorization is the most appropriate method for extraction of muscle synergies in walking and running. Sci Rep 10: 8266. https://doi.org/10.1038/s41598-020-65257-w

Nardon M, Pascucci F, Cesari P, Bertucco M, Latash M (2022) Synergies Stabilizing Vertical Posture in Spaces of Control Variables. Neuroscience 500:79–94. https://doi.org/10.1016/j.neuroscience.2022.08.006

Latash M (2010) Motor synergies and the equilibrium-point hypothesis. Motor Control 14(3):294–322. https://doi.org/10.1123/mcj.14.3.294 10.1123/mcj.14.3.294

De Marchis C, Severini G, Castronovo AM, Schmid M, Conforto S (2015) Intermuscular coherence contributions in synergistic muscles during pedaling. Exp Brain Res 233(6):1907–1919. https://doi.org/10.1007/s00221-015-4262-4.

Madarshahian S, Latash ML (2021) Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. Exp Brain Res 240(1):321–340. https://doi.org/10.1007/s00221-021-06255-w.

Latash ML, Madarshahian S, Ricotta JM (2022) Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 27(2):402–441. https://doi.org/10.1123/mc.2022-0094.

Ricotta JM, Nardon M, De SD, Jiang J, Graziani W, Latash ML (2023) Motor unit-based synergies in a non-compartmentalized muscle. Exp Brain Res 241:1367–1379. https://doi.org/10.1007/s00221-023-06606-9.

Гидиков АА (1975) Теоретические основы электромиографии. Л. Наука [Gidikov AA (1975) Teoreticheskie osnovy elektromiografii. L. Nauka. (In Russ)].

Гурфинкель ВС, Левик ЮС (1985) Скелетная мышца: структура и функция. М. Наука. [Gurfinkel' VS, Levik YUS (1985) Skeletnaya myshca: struktura i funkciya. M. Nauka. (In Russ)].

Nishida K, Hagio S, Kibushi B, Moritani T, Kouzaki M (2017) Comparison of muscle synergies for running between different foot strike patterns. PLoS One 12(2): e0171535. https://doi.org/10.1371/journal.pone.0171535

Moiseev S, Gorodnichev R (2022) Motor Synergy Structure Variability in Different Intensity Locomotions. Hum Physiol 48:370–380. https://doi.org/10.1134/S0362119722040089.

Barroso FO, Torricelli D, Moreno JC,Taylor J, Gomez-Soriano J, Bravo-Esteban E, Piazza S, Santos C, Pons JL (1984) Shared muscle synergies in human walking and cycling. J Neurophysiol. 112(8):1984. https://doi.org/10.1152/jn.00220.2014

Bach MM, Daffertshofer A, Dominici N (2021) Muscle Synergies in Children Walking and Running on a Treadmill. Front Hum Neurosci 15:637157. https://doi.org/10.3389/fnhum.2021.637157

Escalona MJ, Bourbonnais D, Goyette M, Le Flem D, Duclos C, Gagnon DH (2021) Effects of Varying Overground Walking Speeds on Lower-Extremity Muscle Synergies in Healthy Individuals. Motor Control 25(2):234. https://doi.org/10.1123 /mc.2020-0008

Santuz A, Ekizos A, Janshen L et. al. (2018) Modular Control of Human Movement During Running: An Open Access Data Set. Front Physiol 9:1509. https://doi.org/10.3389/fphys.2018.01509

Бернштейн НА (1990) Физиология движений и активность М. Наука [Bernshtejn NA (1990) Fiziologiya dvizhenij i aktivnost` M. Nauka. (In Russ)].

Hajiloo B, Anbarian M, Esmaeili H, Mirzapour M (2020) The effects of fatigue on synergy of selected lower limb muscles during running. J Biomech 103:1. https://doi.org/10.1016/j.jbiomech.2020.109692

Гельфанд И, Цетлин М (1962) О некоторых способах управления сложными системами. УМН 17(1):3–25. [Gel'fand I, Cetlin M (1962) O nekotoryh sposobah upravleniya slozhnymi sistemami. UMN 17(1):3–25. (In Russ)].