Аннотация
Разобщающий белок UCP1 в митохондриях бурых и бежевых адипоцитов обеспечивает продукцию тепла за счет разобщения процессов дыхания и окислительного фосфорилирования. Факты положительного влияния присутствия в жировых депо адипоцитов с экспрессией белка UCP1 на показатели метаболического здоровья организма стимулируют интерес к изучению возрастной динамики белка UCP1. Имеющиеся сведения немногочисленны, в основном получены для предрасположенной к ожирению линии мышей C57Bl/6J и охватывают либо ранний, либо поздний онтогенез. В нашей работе впервые получены данные об экспрессии белка UCP1 в жировых тканях аутбредных мышей ICR в период от окончания грудного вскармливания до старости. Пробы межлопаточной бурой жировой ткани, паховой и окологонадной белой жировой ткани получены у мышей в возрасте 20 сут, 1.5 мес, 6 мес и 18 мес. Уровни экспрессии белка UCP1 оценивали с помощью вестерн-блоттинга. В паховом депо относительная экспрессия белка UCP1 снижалась в 2 раза между 20 сут и 1.5-мес возрастом; у мышей старше 1.5 мес полоса UCP1 на блотах не определялась. В окологонадном депо белок UCP1 обнаружен только в 30% проб 1.5-мес и 6-мес мышей, величина относительной экспрессии была на порядок ниже по сравнению с паховым депо. В бурой жировой ткани статистически значимые изменения экспрессии белка UCP1 не выявлены. Обсуждается физиологическая роль популяции UCP1-экспрессирующих клеток в окологонадном депо, а также возможная связь сроков и темпов снижения экспрессии UCP1 в период роста и созревания репродуктивной функции c активацией липогенеза в паховой жировой ткани.
Литература
Kajimura S, Saito M (2014) A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Ann Rev Physiol 76:225–249. https://doi.org/10.1146/annurev-physiol-021113-170252
Gaspar RC, Pauli JR, Shulman GI, Muñoz VR (2021) An update on brown adipose tissue biology: a discussion of recent findings. Am J Physiol-Endocrinol Metabol 320: E488–E495. https://doi.org/10.1152/ajpendo.00310.2020
Rosenwald M, Wolfrum C (2014) The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 3:4–9. https://doi.org/10.4161/adip.26232
Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell reports 5:1196–1203. https://doi.org/10.1016/j.celrep.2013.10.044
Okamatsu-Ogura Y, Fukano K, Tsubota A, Uozumi A, Terao A, Kimura K, Saito M (2013) Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice. PloS One 8: e84229. https://doi.org/10.1371/journal.pone.0084229
Xue B, Rim J-S, Hogan JC, Coulter AA, Koza RA, Kozak LP (2007) Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res 48:41–51. https://doi.org/10.1194/jlr.M600287-JLR200
Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J (2012) Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol-Endocrinol Metabol 302: E19–E31. https://doi.org/10.1152/ajpendo.00249.2011
Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316. https://doi.org/10.1016/j.cell.2013.12.021
Poher A-L, Veyrat-Durebex C, Altirriba J, Montet X, Colin DJ, Caillon A, Lyautey J, Rohner-Jeanrenaud F (2015) Ectopic UCP1 overexpression in white adipose tissue improves insulin sensitivity in Lou/C rats, a model of obesity resistance. Diabetes 64:3700–3712. https://doi.org/10.2337/db15-0210
Lim J, Park HS, Kim J, Jang YJ, Kim J-H, Lee Y, Heo Y (2020) Depot-specific UCP1 expression in human white adipose tissue and its association with obesity-related markers. Int J Obesity 44:697–706. https://doi.org/10.1038/s41366-020-0528-4
Mishra BK, Madhu SV, Aslam M, Agarwal V, Banerjee BD (2021) Adipose tissue expression of UCP1 and PRDM16 genes and their association with postprandial triglyceride metabolism and glucose intolerance. Diab Res Clin Pract 182:109115. https://doi.org/10.1016/j.diabres.2021.109115
Yuko O-O, Saito M (2021) Brown fat as a regulator of systemic metabolism beyond thermogenesis. Diabet Metabol J 45:840–852. https://doi.org/10.4093/dmj.2020.0291
Kozak LP, Koza RA, Anunciado-Koza R, Mendoza T, Newman S (2012) Inherent plasticity of brown adipogenesis in white fat of mice allows for recovery from effects of post-natal malnutrition. PLoS One 7: e30392. https://doi.org/10.1371/journal.pone.0030392
Liang X, Yang Q, Zhang L, Maricelli JW, Rodgers BD, Zhu M-J, Du M (2016) Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep 6:34345. https://doi.org/10.1038/srep34345
Chabowska-Kita A, Trabczynska A, Korytko A, Kaczmarek MM, Kozak LP (2015) Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. The FASEB J 29:3238–3252. https://doi.org/10.1096/fj.15-271395
Bruder J, Fromme T (2022) Global adipose tissue remodeling during the first month of postnatal life in mice. Front Endocrinol 13:849877. https://doi.org/10.3389/fendo.2022.849877
Rogers NH, Landa A, Park S, Smith RG (2012) Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue. Aging Cell 11:1074–1083. https://doi.org/10.1111/acel.12010
Kodde A, Engels E, Oosting A, Van Limpt K, Van der Beek EM, Keijer J (2019) Maturation of white adipose tissue function in C57bl/6j mice from weaning to young adulthood. Front Physiol 10:836. https://doi.org/10.3389/fphys.2019.00836
Sellayah D, Sikder D (2014) Orexin restores aging-related brown adipose tissue dysfunction in male mice. Endocrinol 155:485–501. https://doi.org/10.1210/en.2013-1629
Pan X-X, Yao K-L, Yang Y-F, Ge Q, Zhang R, Gao P-J, Ruan C-C, Wu F (2021) Senescent T cell induces brown adipose tissue “whitening” via secreting IFN-γ. Front Cell Devel Biol 9:637424. https://doi.org/10.3389/fcell.2021.637424
Nedergaard J, Cannon B (2013) UCP1 mRNA does not produce heat. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1831:943–949. https://doi.org/10.1016/j.bbalip.2013.01.009
Shin W, Okamatsu-Ogura Y, Machida K, Tsubota A, Nio-Kobayashi J, Kimura K (2017) Impaired adrenergic agonist-dependent beige adipocyte induction in aged mice. Obesity 25:417–423. https://doi.org/10.1002/oby.21727
Berry DC, Jiang Y, Arpke RW, Close EL, Uchida A, Reading D, Berglund ED, Kyba M, Graff JM (2017) Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metabol 25:166–181. https://doi.org/10.1016/j.cmet.2016.10.023
Sheng Y, Xia F, Chen L, Lv Y, Lv S, Yu J, Liu J, Ding G (2021) Differential responses of white adipose tissue and brown adipose tissue to calorie restriction during aging. J Gerontol: Ser A 76:393–399. https://doi.org/10.1093/gerona/glaa070
Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng Y-H (2013) Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495:379–383. https://doi.org/10.1038/nature11943
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.
Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem 252:1102–1106. https://doi.org/10.1016/S0021-9258(19)75212-0
Negron SG, Ercan-Sencicek AG, Freed J, Walters M, Lin Z (2020) Both proliferation and lipogenesis of brown adipocytes contribute to postnatal brown adipose tissue growth in mice. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-77362-x
Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol-Endocrinol Metabol 298: E1244–E1253. https://doi.org/10.1152/ajpendo.00600.200