Аннотация
Цель работы - оценить иммунофенотип стволовых клеток жировой ткани, выделенных из жировых депо эпикардиальной и периваскулярной области у пациентов с ишемической болезнью сердца и приобретенными пороками сердца. В культуре клеток, полученной из эпикардиальной и периваскулярной жировой ткани (2-й пассаж) у пациентов как с ишемической болезнью сердца, так и с приобретёнными пороками сердца, наблюдалась высокая (более 90%) экспрессия мембранных белков, характерных для стволовых клеток. Кроме основной популяции как в культуре эпикардиальной, так и в периваскулярной жировой ткани присутствовали две минорные: 1) – CD90-, CD105+, CD34-/+, CD73+, CD45– предположительно эндотелиальная популяция; 2) — CD90+, CD105-, CD34-, CD73-, CD45– самая малочисленная популяция. Вывод: на ранних сроках культивирования клетки стромально-васкулярной фракции, выделенные из эпикардиальной и периваскулярной жировой ткани, экспрессируют поверхностные маркеры характерные для стволовых клеток жировой ткани.
Литература
Zuk PA, Zhu M, Mizuno H., Huang J, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies Tissue Eng 7: 211–228. https://doi.org/10.1089/107632701300062859
Robert AW, Marcon BH, Dallagiovanna B, Shigunov P (2020) Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach. Front Cell Dev Biol 8: 561. https://doi.org/10.3389/fcell.2020.00561
Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the international So. Cytotherapy 15: 641–648. https://doi.org/10.1016/j.jcyt.2013.02.006
Bucan A, Dhumale P, Jørgensen M G, Dalaei F, Wiinholt A, Hansen CR, Hvidsten S, Baun C, Hejbøl EK, Schrøder HD, Sørensen J A (2020) Comparison between stromal vascular fraction and adipose derived stem cells in a mouse lymphedema model. J Plast Surg and Hand Surg 54 (5): 302–311. https://doi.org/10.1080/2000656X.2020.1772799
Krawczenko A, Klimczak A (2022) Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 23 (5): 2425. https://doi.org/10.3390/ijms23052425
Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP (2018) Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 19(8): 2200. https://doi.org/10.3390/ijms19082200
Silva KR, Baptista S (2019) Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 11(3): 147–166. https://dx.doi.org/10.4252/wjsc.v11.i3.14
Mitchell JB, Mcintosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of Human Adipose-Derived Cells: Temporal Changes in Stromal-Associated and Stem Cell–Associated Markers Stem Cells 24(2): 376–385. https://doi.org/10.1634/stemcells.2005-0234
Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, Idris SB (2018) Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 9(1): 168. https://doi.org/10.1186/s13287-018-0914-1
Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y (2019) Adipose-derived stem cells contribute to cardiovascular remodeling Aging 11 (23): 11756—11769. https://doi.org/10.1186/s13287-018-0914-1
Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM, Kota DJ (2017) Concise Review: Fat and Furious: Harnessing the Full Potential of Adipose-Derived Stromal Vascular Fraction. Stem Cells Transl Med 6(4): 1096–1108. https://doi.org/10.1002/sctm.16-0337
Pan Z, Zhou Z, Zhang H, Zhao H, Song P, Wang D, Yin J, Zhao W, Xie Z, Wang F, Li Y, Guo C, Zhu F, Zhang L, Wang Q (2019) CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis. Stem Cell Res Ther 10(1): 355.
Tang Y, Pan ZY, Zou Y, He Y, Yang PY, Tang QQ, Yin FA (2017) A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med 21(9): 2153–2162. https://doi.org/10.1111/jcmm.13138
Tan K, Zhu H, Zhang J, Ouyang W, Tang J, Zhang Y, Qiu L, Liu X, Ding Z, Deng X (2019) CD73 Expression on Mesenchymal Stem Cells Dictates the Reparative Properties via Its Anti-Inflammatory Activity. Stem Cells Internat 8717694. https://doi.org/10.1155/2019/8717694
Lv XJ, Zhou GD, Liu Y, Liu X, Chen JN, Luo XS, Cao YL (2012) In vitro proliferation and differentiation of adipose-derived stem cells isolated using anti-CD105 magnetic beads. Int J Mol Med 30(4): 826–834. https://doi.org/10.3892/ijmm.2012.1063
Li Q, Qi LJ, Guo ZK, Li H, Zuo HB, Li NN (2013) CD73+ adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro. J Mol Histol 44(4): 411–422. https://doi.org/10.1007/s10735-013-9492-9
Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissuederived stromal cells. J Cell Physiol 189: 54–63. https://doi.org/10.1002/jcp.1138
Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109: 656–663. https://doi.org/10.1161/01.CIR.0000114522.38265.61
Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24(4): 150–154. https://doi.org/10.1016/j.tibtech.2006.01.010