Аннотация
Тело человека представляет собой суперорганизм, работа которого напрямую зависит от триллионов микробных клеток, населяющих его. Развиваясь вместе с хозяином в процессе эволюции, микробиота формировала фенотипы наших предков. Возникавшие в процессе естественного отбора мутации приводили к совместной эволюционной адаптации организма хозяина и микробных клеток к условиям окружающей среды и повышению приспособленности к этой среде. Состав и метаболическая активность микробиоты кишечника влияет на различные физиологические процессы, а также развитие патологических состояний и дисметаболических расстройств, включая ожирение. Алкилрезорцинолы (АР) – биологически активные полифенольные соединения преимущественно растительного и микробного происхождения, обладающие различными биологическими свойствами, в том числе способностью в высокой степени влиять на метаболизм хозяина и состав его микробиоты. В настоящем исследовании нами было проведено метагеномное секвенирование микробной ДНК, выделенной из 401 образца фекалий детей и взрослых с нормальным индексом массы тела (ИМТ) и с ожирением, а также определено содержание различных гомологов АР в этих образцах. На основе данных высокопроизводительного секвенирования нами была проведена реконструкция метаболического потенциала кишечной микробиоты и оценены корреляции между содержанием различных гомологов АР и представленностью бактериальных генов, кодирующих различные ферменты, заявленные в базе данных генных ортологов Kyoto Encyclopedia of Genes and Genomes (KEGG). На основании полученных результатов нами были отмечены особенности функциональных изменений кишечной микробиоты, наблюдаемые у взрослых и детей при ожирении.
Литература
Saad MJA, Santos A, Prada PO (2016) Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology 31:283–293.
https://doi.org/10.1152/physiol.00041.2015
Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113:2019–2040. https://doi.org/10.1007/s10482-020-01474-7
Vandenplas Y, Carnielli VP, Ksiazyk J, Luna MS, Migacheva N, Mosselmans JM, Picaud JC, Possner M, Singhal A, Wabitsch M (2020) Factors affecting early-life intestinal microbiota development. Nutrition 78:110812. https://doi.org/10.1016/j.nut.2020.110812
Moeller AH, Sanders JG (2020) Roles of the gut microbiota in the adaptive evolution of mammalian species. Philosophical Transact Royal Society B: Biol Sci 375:20190597. https://doi.org/10.1098/rstb.2019.0597
Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cel Mol Life Sci 76:473–493. https://doi.org/10.1007/s00018-018-2943-4
Arumugam M, Raes J, Pelletier E, le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944
Zabolotneva AA, Shatova OP, Sadova AA, Shestopalov A V., Roumiantsev SA (2022) An Overview of Alkylresorcinols Biological Properties and Effects. J Nutr Metab 2022:1–12. https://doi.org/10.1155/2022/4667607
Bitkov VV, Nenashev VA, Pridachina NN, Batrakov SG (1992) Membrane-structuring properties of bacterial long-chain alkylresorcinols. Biochimica et Biophysica Acta (BBA). Biomembranes 1108:224–232. https://doi.org/10.1016/0005-2736(92)90029-L
Nikolaev YA, Tutel’yan AV, Loiko NG, Buck J, Sidorenko S v., Lazareva I, Gostev V, Manzen’yuk OY, Shemyakin IG, Abramovich RA, Huwyler J, El’-Registan GI (2020) The use of 4-Hexylresorcinol as antibiotic adjuvant. PLoS One 15:e0239147. https://doi.org/10.1371/journal.pone.0239147
Kozubek A, Tyman JHP (1999) Resorcinolic Lipids, the Natural Non-isoprenoid Phenolic Amphiphiles and Their Biological Activity. Chem Rev 99:1–26. https://doi.org/10.1021/cr970464o
Stasiuk M, Kozubek A (2010) Biological activity of phenolic lipids. Cel Mol Life Sci 67:841–860. https://doi.org/10.1007/s00018-009-0193-1
El’-Registan GI, Muliukin AL, Nikolaev IA, Suzina NE, Gal’chenko VF, Duda VI (2006) [Adaptive functions of extracellular autoregulators of microorganisms]. Mikrobiologiia 75:446–456.
Nikolaev IA, Muliukin AL, Stepanenko II, El’-Registan GI (2006) [Autoregulation of stress response in microorganisms]. Mikrobiologiia 75:489–496.
Cox LM, Blaser MJ (2013) Pathways in Microbe-Induced Obesity. Cell Metab 17:883–894. https://doi.org/10.1016/j.cmet.2013.05.004
Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. https://doi.org/10.1038/nature11552
Kovatcheva-Datchary P, Arora T (2013) Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol 27:59–72. https://doi.org/10.1016/j.bpg.2013.03.017
Oishi K, Yamamoto S, Itoh N, Nakao R, Yasumoto Y, Tanaka K, Kikuchi Y, Fukudome S, Okita K, Takano-Ishikawa Y (2015) Wheat Alkylresorcinols Suppress High-Fat, High-Sucrose Diet-Induced Obesity and Glucose Intolerance by Increasing Insulin Sensitivity and Cholesterol Excretion in Male Mice. J Nutr 145:199–206. https://doi.org/10.3945/jn.114.202754
Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM (2008) Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Brit J Nutrit 99:110–120. https://doi.org/10.1017/S0007114507793923
Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP (2013) Impact of Polyphenols and Polyphenol-Rich Dietary Sources on Gut Microbiota Composition. J Agric Food Chem 61:9517–9533. https://doi.org/10.1021/jf402506c
Rejman J, Kozubek A (2004) Inhibitory Effect of Natural Phenolic Lipids upon NAD-Dependent Dehydrogenases and on Triglyceride Accumulation in 3T3-L1 Cells in Culture. J Agric Food Chem 52:246–250. https://doi.org/10.1021/jf034745a
Andersson U, Dey ES, Holm C, Degerman E (2011) Rye bran alkylresorcinols suppress adipocyte lipolysis and hormone-sensitive lipase activity. Mol Nutr Food Res 55:S290–S293. https://doi.org/10.1002/mnfr.201100231
Rejman J, Kozubek A (1997) Long-chain orcinol homologs from cereal bran are effective inhibitors of glycerophosphate dehydrogenase. Cel Mol Biol Let 2:411–419.
Horikawa K, Hashimoto C, Kikuchi Y, Makita M, Oishi K (2022) Wheat alkylresorcinol increases fecal lipid excretion and suppresses feed efficiency in mice depending on time of supplementation. Nutrition 103–104:111796. https://doi.org/10.1016/j.nut.2022.111796
Ross AB, Chen Y, Frank J, Swanson JE, Parker RS, Kozubek A, Lundh T, Vessby B, AÅman P, Kamal-Eldin A (2004) Cereal Alkylresorcinols Elevate γ-Tocopherol Levels in Rats and Inhibit γ-Tocopherol Metabolism In Vitro. J Nutr 134:506–510. https://doi.org/10.1093/jn/134.3.506
Song S, Liu Q, Chai W-M, Xia S-S, Yu Z-Y, Wei Q-M (2021) Inhibitory potential of 4-hexylresorcinol against α-glucosidase and non-enzymatic glycation: Activity and mechanism. J Biosci Bioeng 131:241–249. https://doi.org/10.1016/j.jbiosc.2020.10.011
Chen J, Zhu S, Zhang C, Chen H, Liu Y, Tu J (2013) Inhibition of wheat bran and it′s active compoments on α-glucosidase in vitro. Pharmacogn Mag 9:309. https://doi.org/10.4103/0973-1296.117826
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6
Shestopalov AV, Gaponov AM, Zabolotneva AA, Appolonova SA, Markin PA, Borisenko OV, Tutelyan AV, Rumyantsev AG, Teplyakova ED, Shin VF, Savchuk DV, Volkova NI, Ganenko LA, Makarov VV, Yudin SM, Rumyantsev SA (2022) Alkylresorcinols: New Potential Bioregulators in the Superorganism System (Human–Microbiota). Biol Bullet 49:150–159. https://doi.org/10.1134/S1062359022030153
(2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234
https://www.brenda-enzymes.org/
Ridlon JM, Hylemon PB (2012) Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J Lipid Res 53:66–76. https://doi.org/10.1194/jlr.M020313
Wells JE, Hylemon PB (2000) Identification and Characterization of a Bile Acid 7α-Dehydroxylation Operon in Clostridium sp. Strain TO-931, a Highly Active 7α-Dehydroxylating Strain Isolated from Human Feces. Appl Environ Microbiol 66:1107–1113. https://doi.org/10.1128/AEM.66.3.1107-1113.2000
Vogt SL, Peña-Díaz J, Finlay BB (2015) Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 34:106–115. https://doi.org/10.1016/j.anaerobe.2015.05.002
Bourgin M, Labarthe S, Kriaa A, Lhomme M, Gérard P, Lesnik P, Laroche B, Maguin E, Rhimi M (2020) Exploring the Bacterial Impact on Cholesterol Cycle: A Numerical Study. Front Microbiol 11:1121. https://doi.org/10.3389/fmicb.2020.01121
Vachali P, Bhosale P, Bernstein PS (2012) Microbial Carotenoids. pp 41–59.
Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C (2005) Review article: bifidobacteria as probiotic agents - physiological effects and clinical benefits. Aliment Pharmacol Ther 22:495–512. https://doi.org/10.1111/j.1365-2036.2005.02615.x
Hu J, Lin S, Zheng B, Cheung PCK (2018) Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr 58:1243–1249. https://doi.org/10.1080/10408398.2016.1245650
Karney A (2017) [Microbiota and obesity]. Dev Period Med 21:203–207. https://doi.org/10.34763/devperiodmed.20172103.203207
Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences 105:16767–16772. https://doi.org/10.1073/pnas.0808567105
Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383. https://doi.org/10.1007/s00125-007-0791-0
Hong Y-H, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi K-C, Feng DD, Chen C, Lee H-G, Katoh K, Roh S-G, Sasaki S (2005) Acetate and Propionate Short Chain Fatty Acids Stimulate Adipogenesis via GPCR43. Endocrinology 146:5092–5099. https://doi.org/10.1210/en.2005-0545
Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG (2016) Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J Obes 2016:1–27. https://doi.org/10.1155/2016/7353642
Jan G, Belzacq A-S, Haouzi D, Rouault A, Métivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9:179–188. https://doi.org/10.1038/sj.cdd.4400935
Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5:e73. https://doi.org/10.1038/cti.2016.17
Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B, Krönke G, Herrmann M, Mougiakakos D, Strowig T, Schett G, Zaiss MM (2018) Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 9:55. https://doi.org/10.1038/s41467-017-02490-4
Yagodina O v., Nikol’skaya EB, Khovanskikh AE, Kormilitsyn BN (2002) Amine Oxidases of Microorganisms. J Evol Biochem Physiol 38:251–258. https://doi.org/10.1023/A:1020714607203
Lundgren P, Thaiss CA (2020) The microbiome-adipose tissue axis in systemic metabolism. American Journal of Physiology-Gastrointestinal and Liver Physiology 318:G717–G724. https://doi.org/10.1152/ajpgi.00304.2019
Cronan JE, Littel KJ, Jackowski S (1982) Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol 149:916–922. https://doi.org/10.1128/jb.149.3.916-922.1982
Walker A (2007) Say hello to our little friends. Nat Rev Microbiol 5:572–573. https://doi.org/10.1038/nrmicro1720
Mathur R, Barlow GM (2015) Obesity and the microbiome. Expert Rev Gastroenterol Hepatol 9:1087–1099. https://doi.org/10.1586/17474124.2015.1051029
Indiani CM dos SP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM (2018) Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Childhood Obesity 14:501–509. https://doi.org/10.1089/chi.2018.0040
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16:90. https://doi.org/10.1186/s12866-016-0708-5
Yoon K, Kim N (2021) Roles of Sex Hormones and Gender in the Gut Microbiota. J Neurogastroenterol Motil 27:314–325. https://doi.org/10.5056/jnm20208