ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕМБРАНЫ И ПАРАМЕТРОВ ПОТЕНЦИАЛА ДЕЙСТВИЯ ПАРЫ ИДЕНТИФИЦИРОВАННЫХ ЭЛЕКТРИЧЕСКИ СВЯЗАННЫХ НЕЙРОНОВ LYMNAEA STAGNALIS ПРИ ПРОЛОНГИРОВАННОЙ ЭКСПЕРИМЕНТАЛЬНОЙ ГИПЕРГЛИКЕМИИ
Home

Ключевые слова

глюкоза
электрический синапс
нервная система
гомеостаз
моллюски
беспозвоночные

Аннотация

При помощи микроэлектродного метода изучены реакции пептидергических нейронов VD1 и RPaD2 в составе изолированной ЦНС Lymnaea stagnalis в ответ на пролонгированное (не менее 2 ч) действие высоких концентраций D-глюкозы (10 мМ). Установлено, что электрические характеристики мембраны RPaD2, по сравнению с VD1, претерпевают существенные изменения в условиях гипергликемии – снижение сопротивления мембраны (Rm) на фоне возрастания её ёмкости (Cm) и постоянной времени (τm). Несмотря на неизменность частотных характеристик данной пары нейронов, отмечается деполяризация мембраны VD1, в то время как изменения потенциала покоя для RPaD2 не носят статистически достоверного характера. Изменения временны́х, но не амплитудных характеристик потенциала действия VD1 и RPaD2 носят схожий характер, выражающийся в увеличении длительности основных его фаз (де- и реполяризации, следовой гиперполяризации). Предполагается, что «унификация» электрических свойств мембраны нейросекреторных (VD1/RPaD2) нейронов ЦНС Lymnaea в условиях гипергликемии, является адаптацией, направленной на преодоление возможной десинхронизации спайковой активности этих клеток как результат ослабления, инициированного высоким содержанием глюкозы в интерстиции, электрического сопряжения между ними.

https://doi.org/10.31857/S0044452923020067
Home

Литература

Getting PA (1989) Emerging principles governing the operation of neural networks. Ann Rev Neurosci 12:185–204. https://doi.org/10.1146/annurev.ne.12.030189.001153

Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717. https://doi.org/10.1152/physrev.1996.76.3.687

Skinner FK, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocal inhibitory model neural networks. J Comput Neurosci 1:69–87. https://doi.org/10.1007/BF00962719

Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766. https://doi.org/10.1016/j.neuron.2006.11.008

Berry MS, Pentreath VW (1977) The integrative properties of electrotonic synapses. Comp Biochem Physiol A 57:289–295. https://doi.org/10.1016/0300-9629(77)90193-1

Dickinson PS, Mecsas C, Marder E (1990) Neuropeptide fusion of two motor pattern generator circuits. Nature 344:155–158. https://doi.org/10.1038/344155a0

Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM (2017) Central regulation of glucose homeostasis. Comp Physiol C 7:741–764. https://doi.org/10.1002/cphy.c160015.

Steinbusch L, Labouèbe G, Thorens B (2015) Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol Metab 26:455–466. https://doi.org/10.1016/j.tem.2015.06.005

Bean BF (2007) The action potential in mammalian neurons. Nature Reviews, Neuroscience 8:451–461. https://doi.org/10.1038/nm2148

Kennedy MB (2016) Synaptic signaling in learning and memory. Cold Spring Harbor Perspect Biol 8:a016824. https://doi.org/10.1101/cshperspect.a016824

Kerkhoven RM, Croll RP, Van Minnen J, Bogerd J, Ramkema MD, Lodder H, Boer HH (1991) Axonal mapping of the giant peptidergic neurons VD1 and RPD2 located in the CNS of the pond snail Lymnaea stagnalis, with particular reference to the innervation of the auricle of the heart. Brain Research 565:8–16. https://doi.org/10.1016/0006-8993(91)91730-O.

Bogerd J, Geraerts WP, Van Heerikhuizen H, Kerkhoven RM, Joosse J. (1991) Characterization and evolutionary aspects of a transcript encoding a neuropeptide precursor of Lymnaea neurons, VD1 and RPD2. Brain Res Mol Brain Res 11:47–54. https://doi.org/10.1016/0169-328x(91)90020-x

Sidorov AV, Shadenko VN (2021) Electrical activity of identified neurons in the central nervous system of a mollusk Lymnaea stagnalis under acute hyperglycemia. J Evol Biochem Physiol 56:1257–1266. https://doi.org/10.1134/S0022093021060065

Scheerboom JEM, Hemminga MA, Doderer A. (1978) The effects of a change of diet on consumption and assimilation and on the haemolymph-glucose concentration of the pond snail Lymnaea stagnalis (L) Proc Kon Ned Akad Wet, Ser C 81:335–346.

Benjamin PR, Winlow W (1981) The distribution of three wide-acting synaptic inputs to identified neurones in the isolated brain of Lymnaea stagnalis (L.) Comp Biochem Physiol 70A:293–307. https://doi.org/10.1016/0300-9629(81)90182-1

Солтанов ВВ, Бурко ВЕ (2005) Компьютерные программы обработки электрофизиологических данных. Новости мед.-биол. наук 1:91–95. [Soltanov VV, Burko VE (2005) Computer programs for electrophysiological data-processing. News of Biomed Sci 1:91–95. (In Russ)].

Benjamin PR, Pilkington JB (1986) The electrotonic location of low-resistance intercellular junctions between a pair of giant neurones in the snail Lymnaea. J Physiol 370:111–126. https://doi.org/10.1113/jphysiol.1986.sp015925

Mersman BA, Jolly SN, Lin Z and Xu F (2020) Gap Junction Coding Innexin in Lymnaea stagnalis: Sequence Analysis and Characterization in Tissues and the Central Nervous System. Front. Synaptic Neurosci 12:1. https://doi.org/10.3389/fnsyn.2020.00001

Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch – Eur J Physiol 457:1207–1226. https://doi.org/10.1007/s00424-008-0591-5

Gorman ALF, Mirolli M. (1972). The passive electrical properties of the membrane of a molluscan neurone. J Physiol 227:35–49. https://doi.org/10.1113/jphysiol.1972.sp010018

Qazzaz MM, Winlow W (2017) Modulation of the Passive Membrane Properties of a Pair of Strongly Electrically Coupled Neurons by Anaesthetics. EC Neurology 6.4:187–200.

Copping J, Syed NI, Winlow W (2000) Seasonal plasticity of synaptic connections between identified neurones in Lymnaea. Acta Biol Hung 51:205–210.

Calabresi P, Marfia GA, Centonze D, Pisani A, Bernardi G. (1999) Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons. Stroke 30:171–179. https://doi.org/10.1161/01.str.30.1.171

Glowik RM, Golowasch J, Keller R, Marder E (1997) D-glucose-sensitive neurosecretory cells of the crab Cancer borealis and negative feedback regulation of blood glucose level. J Exp Biol 200:1421–1431. https://doi.org/10.1242/jeb.200.10.1421

Kandel ER (1976) Cellular basis of behavior: an introduction to behavioral neurobiology. San Francisco, W. H. Freeman. 727 p.

Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662:42–60. https://doi.org/10.1016/j.bbamem.2004.01.008

Sidorov AV (2012) Effect of hydrogen peroxide on electrical coupling between identified Lymnaea neurons. Invert Neurosci 12:63–68. https://doi.org/10.1007/s10158-012-0128-7

Bennett MV, Contreras JE, Bukauskas FF, Saez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617. https://doi.org/10.1016/j.tins.2003.09.008

Spray DC (1998) Gap junction proteins: where they live and how they die. Circ Res 83:679–681. https://doi.org/10.1161/01.res.83.6.679

Kits KS, Bobeldijk RC., Crest M, Lodder JC (1991) Glucose-induced excitation in molluscan central neurons producing insulin-related peptides. Pflugers Arch 417:597–604. https://doi.org/10.1007/BF00372957

Сидоров АВ, Шаденко ВН (2022) Электрические характеристики сенсорного нейрона и оборонительные реакции моллюска Lymnaea stagnalis в условиях пролонгированной гипергликемии. Экспериментальная биология и биотехнология 1:23–38. [Sidorov AV, Shadenko VN (2022) Electrical properties of the sensory neuron and defense reactions of mollusc Lymnaea stagnalis at conditions of prolonged hyperglycemia. Experimental Biology and Biotechnology. 1:23–38. (In Russ)]. https://doi.org/10.33581/2957-5060-2022-1-23-38

Floyd PD, Li L, Rubakhin SS, Sweedler JV, Horn CC, Kupfermann I, Alexeeva VY, Ellis TA, Dembrow NC, Weiss KR, Vilim FS (1999) Insulin prohormone processing, distribution, and relation to metabolism in Aplysia californica. J Neurosci 19:7732–7741. https://doi.org/10.1523/JNEUROSCI.19-18-07732.1999

Shevelkin AV (1994) Facilitation of defense reactions during the consumption of food in snails: the participation of glucose and gastrin/cholecystokinin-like peptide. Neurosci Behav Physiol 24:115–124. https://doi.org/10.1007/BF02355661

Burdakov D, Lesage F (2010) Glucose-induced inhibition: how many ionic mechanisms? Acta Physiol (Oxf) 198:295–301. https://doi.org/10.1111/j.1748-1716.2009.02005.x

Huang CW, Huang CC, Cheng JT, Tsai JJ, Wu SN (2007) Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels. J Neurosci Res 85:1468–1477. https://doi.org/10.1002/jnr.21284

Inoue I, Tsutsui I, Brown ER (1997) K+ accumulation and K+ conductance inactivation during action potential trains in giant axons of the squid Sepioteuthis. J Physiol 500:355–366. https://doi.org/10.1113/jphysiol.1997.sp022026

Ye R, Liu J, Jia Z, Wang H, Wang Y, Sun W, Wu X, Zhao Z, Niu B, Li X, Dai G, Li J (2016) Adenosine triphosphate (ATP) inhibits voltage-sensitive potassium currents in isolated Hensen's cells and nifedipine protects against noise-induced hearing loss in guinea pigs. Med Sci Monit 22:2006–2012. https://doi.org/10.12659/msm.898150

Roubos EW, Moorer-Van Delft CM (1976) Morphometric in vitro analysis of the control of the activity of the neurosecretory dark green cells in the freshwater snail Lymnaea stagnalis (L.). Cell Tissue Res 174:221–231. https://doi.org/10.1007/BF00222160

Сидоров АВ (2022) Осмотическая концентрация в гемолимфе моллюска Lymnaea stagnalis при острой экспериментальной гипергликемии.. Экспериментальная биология и биотехнология 3:85–89. [Sidorov AV (2022) Hemolymph osmolality in mollusk Lymnaea stagnalis during acute experimental hyperglycemia. Experimental Biology and Biotechnology. 1:85–89. (In Russ)]. https://doi.org/10.33581/2957-5060-2022-3-85-89

Сидоров АВ (2003) Влияние температуры на легочное дыхание, оборонительные реакции и локомоторное поведение пресноводного легочного моллюска Lymnaea stagnalis. Журн высш нерв деят им ИП Павлова. 53:513–517. [Sidorov AV (2003) Effects of temperature on respiration, defensive behavior and locomotion of fresh-water snail Lymnaea stagnalis. Zhurnal vysshei nervnoi deyatel’nosti im IP Pavlova. 53:513–517. (In Russ)].

Crossley M, Staras K, Kemenes G (2018) A central control circuit for encoding perceived food value. Sci Adv 4:eaau9180. https://doi.org/10.1126/sciadv.aau9180

Dyakonova V, Hernádi L, Ito E, Dyakonova T, Zakharov I, Sakharov D (2015) The activity of isolated snail neurons controlling locomotion is affected by glucose. Biophysics (Nagoya-shi) 11:55–60. https://doi.org/10.2142/biophysics.11.55