УМЕНЬШЕНИЕ АУТОФАГИЧЕСКОЙ И АПОПТОТИЧЕСКОЙ ГИБЕЛИ НЕЙРОНОВ В СА1 РАЙОНЕ ГИППОКАМПА И ЛОБНОЙ КОРЕ МОЗГА КРЫС ВВЕДЕННЫМ ИНТРАНАЗАЛЬНО ИНСУЛИНОМ ПРИ ИШЕМИИ И РЕПЕРФУЗИИ ПЕРЕДНЕГО МОЗГА
PDF

Ключевые слова

ишемия мозга
аутофагия
апоптоз
жизнеспособность нейронов
введенный интраназально инсулин

Аннотация

Для разработки подходов к лечению ишемических поражений мозга важно понимание механизмов регуляции апоптотической и аутофагической гибели нейронов. При сильно выраженном ишемическом (или другом патологическом) воздействии нейроны могут гибнуть от активации и апоптоза, и аутофагии. Целью работы является оценка вклада активации аутофагии и апоптоза в гибель нейронов CA1 района гиппокампа и лобной коры мозга крыс при двухсосудистой ишемии переднего мозга и гипотензии и последующей длительной реперфузии, а также изучение способности инсулина, введенного интраназально, предотвращать аутофагическую и апоптотическую гибель нейронов. Ингибитор аутофагии 3-метиладенин или ингибитор апоптоза Ac-DEVD-CHO или фосфатный буфер вводили крысам интрацеребровентрикулярно до ишемии и реперфузии. Для подсчета количества живых нейронов срезы мозга окрашивали по Нисслю. При ишемии и реперфузии число живых нейронов в CA1 районе гиппокампа снижалось до 58.3±1.5% от их содержания у ложно-оперированных крыс (контроль, принятый за 100%). Введение крысам ингибитора аутофагии или апоптоза увеличивало число живых нейронов в районе CA1 гиппокампа c 58.3±1.5 % до 90.4±2.2% (p<0.001) и 71.6± 1.8% (p<0.001) от контроля, соответственно. Введение крысам 0.5 МЕ инсулина (до ишемии и ежедневно в течение 7 дней при реперфузии) нормализовало число живых нейронов в CA1 районе гиппокампа до 100.2±1.9% от контроля. В лобной коре мозга также наблюдалось снижение жизнеспособности нейронов при ишемии и реперфузии и ее повышение при введении ингибиторов аутофагии и апоптоза и в большей степени при введении инсулина. Отличие заключалось в меньшей чувствительности нейронов коры мозга, чем нейронов гиппокампа к ишемии и реперфузии. Полученные данные свидетельствуют о способности инсулина, введенного интраназально, уменьшать гибель нейронов мозга, вызванную активацией аутофагии и апоптоза, при ишемии мозга и реперфузии.

https://doi.org/10.31857/S0044452923010047
PDF

Литература

Zhou H, Wang J, Jiang J, Stavrovskaya IG, Li M, Li W, Wu Q, Zhang X, Luo C, Zhou S, Sirianni AC, Sarkar S, Kristal BS, Friedlander RM, Wang X (2014) N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci 34: 2967–2978. https://doi.org/10.1523/JNEUROSCI.1948-13.2014

Wang M, Li Y.-J, Ding Y, Zhang H-N, Sun T, Zhang K, Yang L, Guo Y-Y, Liu S-B, Zhao M-G, Qu Y-M (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53: 932–943. https://doi.org/10.1007/s12035-014-9062-5

Li L, Tian J, Long MK-W, Chen Y, Lu J, Zhou C, Wang T (2016) Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. PLoS One 11: e0144219. https://doi.org/10.1371/journal.pone.0144219

Li X, Wang M, Qin C, Fan W-H, Tian D-S, Liu J-L (2017) Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PloS One 12: e0188748. https://doi.org/10.1371/journal.pone.0188748

Nabavi, SF, Sureda A, Sanches-Silva A, Pandima DK, Ahmed T, Shahid M (2019) Novel therapeutic strategies for stroke: the role of autophagy. Critical Rev Clin Lab Sci 56 (3): 182–199. https://doi.org/10.1080/10408363.2019.1575333

Hu Y, Zhou H, Zhang H, Sui Y, Zhang Z, Zou Y, Li K, Zhao Y, Xie J, Zhang L (2022) The neuroprotective effect of dexmedetomidine and its mechanism. Front Pharmacol 13: 965661. eCollection 2022. https://doi.org/10.3389/fphar.2022.965661

Zhang H, Wang X, Chen W, Yang Y, Wang Y, Wan H, Zhu Z (2023) Danhong injection alleviates cerebral ischemia-reperfusion injury by inhibiting autophagy through miRNA-132-3p/ATG12 signal axis. J Ethnopharmacol 300:115724. https://doi.org/10.1016/j.jep.2022.115724

Carloni S, Balduini W (2020) Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 324: 113117. https://doi.org/10.1016/j.expneurol.2019.113117

Li Q, Zhang T, Wang J, Zhang Z, Yu Zhai Y, Sun X (2014) Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun 4 (2): 182–188. https://doi.org/10.1016/j.bbrc.2014.01.032

Buckley KM, Hess DL, Sazonova IY, Periyasamy-Thandavan S, John R, Barrett JR, Kirks R, Grace H, Kondrikova G, Johnson MH, Hess DC, Schoenlein PV, Hoda MN, Hill WD (2014) Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp Transl Stroke Med 6: 8. eCollection. https://doi.org/10.1186/2040-7378-6-8

Liu X, Tian F, Wang S, Wang F, Xiong L (2018) Astrocyte Autophagy Flux Protects Neurons Against Oxygen-Glucose Deprivation and Ischemic/Reperfusion Injury. Rejuvenation Res 215: 405–415. https://doi.org/10.1089/rej.2017.1999

Pineda-Ramírez N, Alquisiras-Burgos I, Ortiz-Plata A, Ruiz-Tachiquín M-E, Espinoza-Rojo M, Aguilera P (2020) Resveratrol activates neuronal autophagy ttrough AMPK in the ischemic brain. Mol Neurobiol 57 (2): 1055–1069. https://doi.org/10.1007/s12035-019-01803-6

Луговая АВ, Эмануэль ВС, Артемова АВ, Митрейкин ВФ (2020) Современные подходы к оценке биологических маркеров аутофагии и апоптоза при остром ишемическом инсульте. Соврем пробл науки и обр 4: 159–174. [Lugovaya AV, Emanuel VS, Artemova AV, Mitreikin VF (2020) Modern approaches to the assessment of biological markers of autophagy and apoptosis in acute ischemic stroke. Sovrem probl nauki i obr 4:159–174. (In Russ)]. https://doi.org/10.17513/spno.30017

Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci 21 (20): 7609. https://doi.org/10.3390/ijms21207609

Barthels D, Das H (2020) Current advances in ischemic stroke research and therapies. Biochim Biophys Acta. Mol Basis Dis 1866 (4): 165260. https://doi.org/10.1016/j.bbadis.2018.09.012

Campbell BCV, Khatri P (2020) Stroke. Lancet 396 (10244): 149–142. https://doi.org/10.1016/S0140-6736(20)31179-X

He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y (2022) Autphagy and apoptosis in acute brain injuries: From mechanism to treatment. Antioxid Redox Signal. https://doi.org/10.1089/ars.2021.0094.

Fan LW, Carter K, Beatt A, Pang Y (2019) Rapid transport of insulin to the brain following intranasal administration in rats. Neural Regen Res 14: 1046–1051. https://doi.org/10.4103/1673-5374.250624

Tashima T (2020) Shortcut approaches to substance delivery into the brain based on intranasal administration using nanodelivery strategies for insulin. Molecules 25 (21): 5188. https://doi.org/10.3390/molecules25215188

Craft S, Claxton A, Baker LD, Hanson AJ, Collerton B, Trittschuh EH, Dahl D, Caulder E, Neth B, Montine TJ, Jung Y, Maldjian J, Whitlow C, Friedman S (2017) Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: A pilot clinical trial. J Alzheimers Dis 57: 1325–1334. https://doi.org/10.3233/JAD-161256

Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG, Lioutas VA (2018) Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment. A systematic review. J Neurol 265: 1497–1510. https://doi.org/10.1007/s00415-018-8768-0

Novak P, Maldonado DAP, Novak V (2019) Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: A double-blinded placebo-controlled pilot study. PLoS One 14: e0214364. https://doi.org/10.1371/journal.pone.0214364

Zorina II, Zakharova IO, Bayunova LV, Avrova NF (2018) Insulin Administration Prevents Accumulation of Conjugated Dienes and Trienes and Inactivation of Na+, K+-ATPase in the Rat Cerebral Cortex during Two-Vessel Forebrain Ischemia and Reperfusion. J Evol Biochem Phys 54:246–249. https://doi.org/10.1134/S0022093018030109

Зорина ИИ, Фокина ЕА, Захарова ИО, Баюнова ЛВ, Шпаков АО (2019) Особенности изменений перекисного окисления липидов и активности Na+, K+-АТФазы у старых крыс в условиях двухсосудистой церебральной ишемии/реперфузии. Успехи геронтологии 32 (6): 941–947. [Zorina II , Fokina EA, Zakharova IO, Bayunova LV, Shpakov AO (2019) Features of the changes in lipid peroxidation and activity of Na+/K+-ATPase in the brain of the aged rats in the conditions of two-vessel cerebral ischemia/reperfusion Adv Gerontol 32(6):941–947. (In Russ)].

Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Fourth Edition. Acad. Press.. San Diego, Calif. USA.

Molchanova SM, Moskvin AN, Zakharova IYu, Yurlova LA, Nosova IYu, Avrova NF (2005) effects of two-vessel forebrain ischemia and of administration of indomethacin and quinacrine on NA+ ,K+-ATpase activity in various rat brain areas. J Evol Biochem Physiol 41(1): 39–46.

Sanderson TH, Wider JM (2013) 2-Vessel occlusion/hypotension: A rat model of global brain ischemia. J Vis Exp 76: e50173. https://doi.org/10.3791/50173

Luo T, Liu G, Ma H, Lu B, Xu H, Wang Y, Wu J, Ge P, Liang J (2014) Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against meuronal death caused by ischemic insults. Int J Mol Sci 15 (9): 15426–15442. https://doi.org/10.3390/ijms150915426

Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One. 2012. 7(4): e35324. https://doi.org/10.1371/journal.pone.00353241

Wen Y-D, Sheng R, Zhang L-S, Han R, Zhang X, Zhang X-D, Han F, Fukunaga K, Qin Z-H (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways Autophagy 4 (6): 762–769, https://doi.org/10.4161/auto.6412

Pylova SI, Majkowska J, Hilgier W, Kapuściński A (1989) Rapid decrease of high affinity ouabain binding sites in hippocampal CA1 region following short-term global cerebral ischemia in rat. Albrecht J Brain Res 490 (1): 170–173. https://doi.org/10.1016/0006-8993(89)90446-0

Zhu H, Yoshimoto T, Imajo-Ohmi S, Dazortsava M, Mathivanan A, Yamashima T (2012) Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J Neurochem 120 (4): 574–585. https://doi.org/10.1111/j.1471-4159.2011.07550.x

Gong P, Zou Y, Zhang W, Tian Q, Han S, Xu Z, Chen Q, Wang X, Li M (2021) The neuroprotective effects of insulin-like growth factor 1 via the Hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury. Brain Res Bul 177: 373–387. https://doi.org/10.1016/j.brainresbull.2021.10.017

Shen H, Gu X, Wei ZZ, Wu A, Liu X, Wei L (2021) Combinatorial intranasal delivery of bone marrow mesenchymal stem cells and insulin-like growth factor-1 improves neurovascularization and functional outcomes following focal cerebral ischemia in mice. Exp Neurol 337: 113542. https://doi.org/10.1016/j.expneurol.2020.113542

Zhang D, Yuan Y, Zhu J, Zhu D, Li C, Cui W, Wang L, Ma S, Duan S, Liu B (2021) Insulin-like growth factor 1 promotes neurological functional recovery after spinal cord injury through inhibition of autophagy via the PI3K/Akt/mTOR signaling pathway. Exp Ther Med. 22 (5): 1265. https://doi.org/ 10.3892/etm.2021.10700

Thiebaut AM, Buendia I, Ginet V, Lemarchand E, Boudjadja MB, Hommet Y, Lebouvier L, Lechevallier C, Maillasson M, Hedou E, Déglon N, Oury F, Rubio M, Montaner J, Puyal J, Vivien D, Roussel BD (2022) Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia. Autophagy 18 (6): 1297–1317. https://doi.org/10.1080/15548627.2021.1973339

Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V (2015) Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res 6 (4): 264–275. https://doi.org/10.1007/s12975-015-0409-7

Moller AB, Voss TS, Vendelbo MH, Pedersen SB, Moller N, Jessen N (2018) Insulin inhibits autophagy signaling independent of counter-regulatory hormone levels, but does not affect the effects of exercise. J Appl Physiol 125: 1204–1209. https://doi.org/10.1152/japplphysiol.00490.2018

Ribeiro M, López de Figueroa P, Blanco FJ, Mendes AF, Caramés B (2016) Insulin decreases autophagy and leads to cartilage degradation. Osteoarthritis Cartilage 24: 731–739. https://doi.org/10.1016/j.joca.2015.10.017

Pires KM, Torres NS, Buffolo M, Gunville R, Schaaf C, Davis K, Selzman CH, Gottlieb RA, Boudina S (2019) Suppression of cardiac autophagy by hyperinsulinemia in insulin receptor-deficient hearts is mediated by insulin-like growth factor receptor signaling. Antioxid Redox Signal 31 (6): 444–457. https://doi.org/10.1089/ars.2018.7640

Russo V, Candeloro P, Malara N, Perozziello G, Iannone M, Scicchitano M, Mollace R, Musolino V, Gliozzi M, Carresi C (2019) Key role of cytochrome C for apoptosis detection using Raman microimaging in an animal model of brain ischemia with insulin treatment. Appl Spectrosc 73 (10): 1208–1217. https://doi.org/10.1177/0003702819858671

Zakharova IO, Sokolova TV, Bayunova LV, Zorina II, Rychkova MP, Shpakov AO, Avrova NF (2019) The protective effect of insulin on rat cortical neurons in oxidative stress and its dependence on the modulation of Akt, GSK-3beta, ERK1/2, and AMPK activities. Int J Mol Sci 20 (15):E3702. https://doi.org/10.3390/ijms20153702

Saikia R, Joseph J (2021) AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med (Berl) 99 (11):1539–1551. https://doi.org/10.1007/s00109-021-02125-8

Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu ., Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn .B. 2004. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428 (6982): 569–574. https://doi.org/10.1038/nature02440

Valentine RT, Coughlan KA, Ruderman NB, Saha AK (2014) Insulin inhibits AMPK activity and phodphorylatesAMPK Ser 485/491 through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys 562: 62–69. https://doi.org/10.1016/j.abb.2014.08.013

Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, Chen B, Wang X, Dai J (2008) Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci 39(1):118–124. https://doi.org/10.1016/j.mcn.2008.06.003