КОНСЕРВАТИЗМ И ВАРИАБЕЛЬНОСТЬ СИСТЕМЫ АНТИОКСИДАНТНОЙ ЗАЩИТЫ РЕТИНАЛЬНОГО ПИГМЕНТНОГО ЭПИТЕЛИЯ ПОЗВОНОЧНЫХ
PDF

Ключевые слова

окислительно-восстановительный баланс
гомеостаз
ретинальный пигментный эпителий
активные формы кислорода
окислительный стресс
система антиоксидантной защиты
транскрипционные факторы
Nrf2
регенерация
стратегии клеточного ответа РПЭ

Аннотация

В ходе эволюции организмы разработали стратегии, позволяющие использовать активные формы кислорода (АФК) в регуляции физиологических процессов и поддержании гомеостаза. Клетки тканей с высоким уровнем метаболизма и внутриклеточных АФК, одним из ярких примеров которых является ретинальный пигментный эпителий (РПЭ), более подвержены риску повреждения под действием окислительного стресса (ОС), под влиянием экзогенных или эндогенных факторов. Клетки РПЭ позвоночных, несмотря на консервативность строения глаза и основных функций его тканей, по-разному реагируют на ОС, что обусловлено видоспецифичностью компонентов сигнальных путей, формирующих систему антиоксидантной защиты (АОЗ). Важная роль в АОЗ принадлежит факторам транскрипции, в частности, Nrf2. Cистема АОЗ в РПЭ включает несколько уровней регуляции, взаимодействие которых обеспечивает стабильность морфофункционального состояния клеток. Филогенетический анализ демонстрирует не только консерватизм, но и вариабельность компонентов АОЗ, что может иметь адаптационное значение, отражать различия функциональной нагрузки и регенеративного потенциала. Выявление механизмов АОЗ, обеспечивающих морфофункциональную стабильность клеток РПЭ, имеет фундаментальное значение и нацелено на поиск тканеспецифичных мишеней для эффективной терапии спектра заболеваний глаза.

https://doi.org/10.31857/S0044452923030051
PDF

Литература

Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S (2022) Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal. Front Physiol 13: 874321. https://doi.org/10.3389/fphys.2022.874321

Di Meo S, Venditti P (2020) Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid Med Cell Longev 2020: 9829176. https://doi.org/10.1155/2020/9829176

Country MW (2017) Retinal metabolism: A comparative look at energetics in the retina. Brain Res 1672: 50–57. https://doi.org/10.1016/j.brainres.2017.07.025

Damsgaard C, Lauridsen H, Funder AM, Thomsen JS, Desvignes T, Crossley DA 2nd, Møller PR, Huong DT, Phuong NT, Detrich HW 3rd, Brüel A, Wilkens H, Warrant E, Wang T, Nyengaard JR, Berenbrink M, Bayley M (2019) Retinal oxygen supply shaped the functional evolution of the vertebrate eye. Elife 8: e52153. https://doi.org/10.7554/eLife.52153

Fuhrmann S, Zou CJ, Levine E (2014) Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 123: 141–150. https://doi.org/10.1016/j.exer.2013.09.003

Amram B, Cohen-Tayar, David A, Ashery-Padan R (2017) The retinal pigment epithelium – from basic developmental biology research to translation approaches. Int J Dev Biol 61(3-4-5): 225–234. https://doi.org/10.1387/ijdb.160393ra

Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21 Suppl (6):3–9. https://doi.org/10.5301/EJO.2010.6049.

Chen M, Rajapakse D, Fraczek M, Luo Chang, Forrester John V , Xu Heping (2016) Retinal pigment epithelial cell multinucleation in the aging eye – A mechanism to repair damage and maintain homoeostasis. Aging Cell 15(3): 436–445. https://doi.org/10.1111/acel.12447

Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280(22): 21061–21066. http://doi.org/10.1074/jbc.M502194200

Nebbioso M, Franzone F, Lambiase A, Bonfiglio V, Limoli PG, Artico M, Taurone S, Vingolo EM, Greco A, Polimeni A (2022) Oxidative Stress Implication in Retinal Diseases-A Review. Antioxidants (Basel) 11(9): 1790. https://doi.org/10.3390/antiox11091790

Mitter SK, Song C, Qi X, Mao H, Rao H, Akin D, Lewin A, Grant M, Dunn Jr W, Ding J, Rickman CB, Boulton M (2014) Dysregulated Autophagy in the RPE Is Associated with Increased Susceptibility to Oxidative Stress and AMD. Autophagy 10(11): 1989–2005. https://doi.org/10.4161/auto.36184

Markitantova YuV, Simirskii VN (2020) Role of the Redox System in Initiation of a Regenerative Response of Neural Eye Tissues in Vertebrates. Russ J Dev Biol 51(1): 16–30. http:// doi:10.1134/s106236042001004x

Grigoryan EN, Markitantova YV (2016) Cellular and molecular preconditions for retinal pigment epithelium (RPE) natural reprogramming during retinal regeneration in Urodela. Biomedicines 4(4):28. https://doi.org/10.3390/biomedicines4040028

Sousounis K, Bhavsar R, Looso M, Krüger M, Beebe J, Braun T, Tsonis PA (2014) Molecular signatures that correlate with induction of lens regeneration in newts: lessons from proteomic analysis. Hum Genomics 8(1):22. https://doi.org/10.1186/s40246-014-0022-y

Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2): 48–60. https://doi.org/10.1016/j.canlet.2011.12.012

Roehlecke C, Schumann U, Ader M, Brunssen C, Bramke S, Morawietz H, Funk RHW (2013) Stress reaction in outer segments of photoreceptors after blue light irradiation. PLoS One 8: e71570: 1–12. https://doi.org/10.1371/journal.pone.0071570

Cervellati F, Cervellati C, Romani A, Cremonini E, Sticozzi C, Belmonte G, Pessina F, Valacchi G (2014) Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radic Res 48(3):303–312. https://doi.org/10.3109/10715762.2013.867484

George SM, Lu F, Rao M, Leach LL, Gross JM (2021) The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 85:100969. https://doi.org/10.1016/j.preteyeres.2021.100969

Caceres PS, Rodriguez-Boulan E (2020) Retinal Pigment Epithelium Polarity in Health and Blinding Diseases. Curr Opin Cel Biol 62: 37–45. https://doi.org/10.1016/j.ceb.2019.08.001

Kaemmerer E, Schutt F, Krohne TU, Holz FG, Kopitz J (2007) Effects of lipid peroxidation-related protein modifications on RPE lysosomal functions and POS phagocytosis. Invest Ophthalmol Vis Sci 48(3): 1342–1347. https://doi.org/10.1167/iovs.06-0549

Sinha D, Valapala M, Shang P, Hose S, Grebe R, Lutty GA, Zigler Jr JS, Kaarniranta K, Handa JT (2016) Lysosomes: regulators of autophagy in the retinal pigmented epithelium. Exp Eye Res (144): 46–53. https://doi.org/10.1016/j.exer.2015.08.018

Zadto A, Ito S, Sarna M, Wakamatsu K, Mokrzyński K, Sarna T (2020) The role of hydrogen peroxide and singlet oxygen in the photodegradation of melanin. Photochem Photobiol Sci (19): 654–667. http://doi.org/10.1039/C9PP00481E

Pan WW, Wubben TJ, Besirli CG (2021) Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 4(1):245. https://doi.org/10.1038/s42003-021-01765-3.

Masutomi K, Chen C, Nakatani K, Koutalos Y (2012) All-trans retinal mediates light-induced oxidation in single living rod photoreceptors. Photochem Photobiol 88(6): 1356–1361. https://doi.org/10.1111/j.1751-1097.2012.01129.x

Kaarniranta K, Koskela A, Felszeghy S, Kivinen N, Salminen A, Kauppinen A (2019) Fatty acids and oxidized lipoproteins contribute to autophagy and innate immunity responses upon the degeneration of retinal pigment epithelium and development of age-related macular degeneration. Biochimie 159: 49–54. https://doi.org/10.1016/j.biochi.2018.07.010

Sparrow JR, Hicks D, Hamel C (2010) The retinal pigment epithelium in health and disease. Curr Mol Med (10): 802–823. http:// DOI:10.2174/156652410793937813

Zhang ZY, Sun YJ, Song JY, Fan B, Li G-Yu (2021) Experimental models and examination methods of retinal detachment. Brain Res Bull (169): 51–62. https://doi.org/10.1016/j.brainresbull.2021.01.004

Erler P, Monaghan JR (2015) The link between injury-induced stress and regenerative phenomena: A cellular and genetic synopsis. Biochim Biophys Acta 1849(4): 454–461. https://doi.org/10.1016/j.bbagrm.2014.07.021

Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME (2004) Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45(2): 675–684. https://doi.org/10.1167/iovs.03-0351

Hua J, Chen H, Chen Y, Zheng G, Li F, Qu J, Ma X, Hou L (2018) MITF acts as an anti-oxidant transcription factor to regulate mitochondrial biogenesis and redox signaling in retinal pigment epithelial cells. Exp Eye Res 170: 138–147. https://doi.org/10.1016/j.exer.2018.02.023

Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5): 981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

Lacy F, Gough DA, Schmid-Schonbein GW (1998) Role of xanthine oxidase in hydrogen peroxide production. Free Radic Biol Med 25(6): 720–727. https://doi.org/10.1016/S0891-5849(98)00154-3

Guerra MH, Yumnamcha T, Singh LP, Ibrahim AS (2021) Relative Contribution of Different Mitochondrial Oxidative Phosphorylation Components to the Retinal Pigment Epithelium Barrier Function: Implications for RPE-Related Retinal Diseases. Int J Mol Sci 22(15): 8130. https://doi.org/10.3390/ijms22158130

Usui S, Oveson BC, Iwase T, Lu L, Lee SY, Jo Y-J, Wu Z, Choi E-Y, Samulski RJ, Campochiaro PA (2011) Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free Radic Biol Med 51(7): 1347–1354. https://doi.org/10.1016/j.freeradbiomed.2011.06.010

Brennan AM, Suh SW, Won SJ (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12(7): 857–863. https://doi.org/110.1038/nn.2334

Buvelot H, Jaquet V, Krause KH (2019) Mammalian NADPH Oxidases. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods Mol Biol 1982:17–36. https://doi.org/10.1007/978-1-4939-9424-3_2

Massari M, Nicoll CR, Marchese S, Mattevi A, Mascotti ML (2022) Evolutionary and structural analyses of the NADPH oxidase family in eukaryotes reveal an initial calcium dependency. Redox Biol 56:102436. https://doi.org/10.1016/j.redox.2022.102436

Boulton M, Dontsov A, Jarvis-Evans J, Ostrovsky M, Svistunenko D (1993) Lipofuscin is a photoinducible free radical generator. J Photochem Photobiol Biol 19: 201–204. https://doi.org/10.1016/1011-1344(93)87085-2

Dontsov AE, Sakina NL, Ostrovsky MA (2017) Loss of melanin by eye retinal pigment epithelium cells is associated with its oxidative destruction in melanolipofuscin granules. Biochemistry (Moscow) 82:916–924. https://doi.org/10.1134/S0006297917080065

Dontsov AE, Sakina NL, Koromyslova AD, Ostrovsky MA (2015) Effect of UV radiation and hydrogen peroxide on the antiradical and antioxidant activities of DOPA-melanin and melanosomes from retinal pigment epithelial cells. Russian Chemical Bulletin 64:1623–1628. https://doi.org/10.1007/s11172-015-1051-y

Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42: 3041–3046.

Lismont C, Revenco, I, Fransen M (2019) Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int J Mol Sci 20: 3673. https://doi.org/10.3390/ijms20153673

Camoes F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M (2015) New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta 1853(1): 111–125. https://doi.org/10.3389/fphys.2013.00261

Zhang SX, Sanders E, Fliesler SJ, Wang JJ (2014) Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res (125): 30–40. https://doi.org/10.1016/j.exer.2014.04.015

Shao X, Guha S, Lu W, Campagno KE, Beckel JM, Mills JA, Yang W, Mitchell CH (2020) Polarized Cytokine Release Triggered by P2X7 Receptor from Retinal Pigmented Epithelial Cells Dependent on Calcium Influx. Cells 9 (12): 2537. https://doi.org/10.3390/cells9122537

Bazan NG (2006) Survival signaling in retinal pigment epithelial cells in response to oxidative stress: significance in retinal degenerations. Adv Exp Med Biol 572: 531–540. http://DOI:10.1007/0-387-32442-9_74

Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney M, Cooper JB, Hageman GS, Anderson DH, Johnson LV, Radeke MJ (2012) Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med 4(16): 1–18. http://genomemedicine.com/content/4/2/16

Zhang M, Jiang N, Chu Y, Postnikova O, Varghese R, Horvath A, Cheema AK, Golestaneh N (2020) Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep (10): 2464. https://doi.org/10.1038/s41598-020-59244-4

Voigt AP, Mulfaul K, Mullin NK, Flamme-Wiese MJ, Giacalone JC, Stone EM, Tucker BA, Scheetz TE, Mullins RF (2019) Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc Nat Acad Sci USA 116(48): 24100–24107. https://doi.org/10.1073/pnas.1914143116

Meyer JG, Garcia TY, Birgit Schilling B, Gibson Bradford W , Lamba DA (2019) Proteome and Secretome Dynamics of Human Retinal Pigment Epithelium in Response to Reactive Oxygen Species. Sci Rep 9:15440. https://doi.org/10.1038/s41598-019-51777-7

Jin HL, Jeong KW (2022) Transcriptome Analysis of Long-Term Exposure to Blue Light in Retinal Pigment Epithelial Cells. Biomol Ther (Seoul) 30: 291–297. https://doi.org/10.4062/biomolther.2021.155

Shao Z, Chwa M, Atilano SR, Park J, Karageozian H, Karageozian V, Kenney MC (2022) The Transcriptome Profile of Retinal Pigment Epithelium and Müller Cell Lines Protected by Risuteganib Against Hydrogen Peroxide Stress // J Ocul Pharmacol Ther 38(7): 513–526. https://doi.org/10.1089/jop.2022.0015

Maher J, Yamamoto M (2010) The rise of antioxidant signaling--the evolution and hormetic actions of Nrf2. Toxicol Appl Pharmacol 244(1): 4–15. https://doi.org/10.1016/j.taap.2010.01.011

Fuse Y, Kobayashi M (2017) Conservation of the Keap1-Nrf2 System: An Evolutionary Journey through Stressful Space and Time. Molecules 22(3):436. https://doi.org/10.3390/molecules22030436

Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, Stanyer L, Yamamoto M, Dinkova-Kostova AT, Abramov AY (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2(8): 761–770. https://doi.org/10.1242/bio.20134853

Gacesa R, Dunlap WC, Barlow DJ, Laskowski RA, Long PF (2016) Rising levels of atmospheric oxygen and evolution of Nrf2. Sci Rep 6: 27740. https://doi.org/10.1038/srep27740

Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 25(22): 5474. https://doi.org/10.3390/molecules25225474

Rada P, Rojo AI, Evrard-Todeschi N, Innamorato NG, Cotte A, Jaworski T, Tobon-Velasco JC, Devijver H, Garcia-Mayoral MF, Van Leuven F, Hayes JD, Bertho G, Cuadrado A (2012) Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis. Mol Cell Biol 32: 3486–3499. https://doi.org/10.1016/j.freeradbiomed.2015.04.029

Wang M, Wang Q, Wang Z, Wang Q, Zhang X, Pan Y (2013) The Molecular Evolutionary Patterns of the Insulin/FOXO Signaling Pathway. Evol Bioinform 9: 1–16. https://doi.org/10.4137/EBO.S105

Boas SM, Joyce KL, Cowell RM (2021) The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants (Basel) 11(1):8. https://doi.org/10.3390/antiox11010008

Raghunath A, Nagarajan R, Sundarraj K, Panneerselvam L, Perumal E (2018) Genome-wide identification and analysis of Nrf2 binding sites - Antioxidant response elements in zebrafish. Toxicol Appl Pharmacol 360: 236–248. https://doi.org/10.1016/j.taap.2018.09.013

Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K & Yamamoto M (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7:11624. 1–14. https://doi.org/10.1038/ncomms11624

Nagara S, Noverala SM, Trudler D, Lopez KM, McKercher SR, Han X, Yates JR, Piña-Crespo JC , Nakanishi N, Satoh T, Okamoto S-I, Lipton SA (2017) MEF2D haploinsufficiency downregulates the NRF2 pathway and renders photoreceptors susceptible to light-induced oxidative stress. Proc Natl Acad Sci USA 114(20): E4048–E4056. https://doi.org/10.1073/pnas.1613067114

Gureev AP, Popov VN, Starkov AA (2020) Crosstalk between the mTOR and Nrf2/ARE signaling pathways as a target in the improvement of long-term potentiation. Exp Gerontol 328:113285. https://doi.org/10.1016/j.expneurol.2020.113285

Zhao Z, Chen Y, Wang J, Sternberg P, Freeman ML, Grossniklaus HE, Cai J (2011) Age-related retinopathy in NRF2-deficient mice. PLoS One 6 (e19456): 1–10. https://doi.org/10.1371/journal.pone.0019456

Han S, Chen J, Hua J, Hu X, Jian S, Zheng G, Wang J, Li H, Yang J, Hejtmancike JF, Qu J, Ma X, Hou L (2020) MITF protects against oxidative damage-induced retinal degeneration by regulating the NRF2 pathway in the retinal pigment epithelium. Redox Biol 34: 101537. 1–14. https://doi.org/10.1016/j.redox.2020.101537

Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain (5):14. http://www.molecularbrain.com/content/5/1/14.

Katsuoka F, Yamamoto M (2016) Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 586: 197–205. https://doi.org/10.1016/j.gene.2016.03.058

Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11(6): 867–880. https://doi.org/10.1080/15548627.2015.1034410

Pajares M, Jiménez-Moreno N, García-Yagüe ÁJ, Escoll M, de Ceballos ML, Leuven FV, Rábano A, Yamamoto M, Rojo AI, Cuadrado A (2016) Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12(10): 1902–1916. https://doi.org/10.1080/15548627.2016.1208889

Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E (2018) Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 17: 297–314. https://doi.org/10.1016/j.redox.2018.05.002

L'honoré A, Drouin J, Buckingham M, Montarras D (2014) Pitx2 and Pitx3 transcription factors: two key regulators of the redox state in adult skeletal muscle stem cells and muscle regeneration. Free Radic Biol Med 75. https://doi.org/10.1016/j.freeradbiomed.2014.10.781

Yang S, Zhou J, Li D (2021) Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol 12: 727870. https://doi.org/10.3389/fphar.2021.727870

Karpukhina A, Galkin I, Ma Y, Dib C, Zinovkin R, Pletjushkina O, Chernyak B, Popova E, Vassetzky Y (2021) Analysis of genes regulated by DUX4 via oxidative stress reveals potential therapeutic targets for treatment of facioscapulohumeral dystrophy. Redox Biol 43: 102008. https://doi.org/10.1016/j.redox.2021.102008

Li Z, Dong X, Liu H, Chen X, Shi H, Fan Y, Hou D, Zhang X (2013) Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol Vis 19:1656–1666. http://www.molvis.org/molvis/v19/1656

Chapple SJ, Siow RC, Mann GE (2012) Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol 44(8):1315–1320. https://doi.org/10.1016/j.biocel.2012.04.021

Zha X, Wu G, Zhao X, Zhou L, Zhang H, Li J, Ma L, Zhang Y (2015) PRDX6 Protects ARPE-19 Cells from Oxidative Damage via PI3K/AKT Signaling. Cell Physiol Biochem 36(6): 2217–2228. https://doi.org/10.1159/000430186

Chatzidimitriou E, Bisaccia P, Corrà F, Bonato M, Irato P, Manuto L, Toppo S, Bakiu R, Santovito G (2020) Copper/Zinc Superoxide Dismutase from the Crocodile Icefish Chionodraco hamatus: Antioxidant Defense at Constant Sub-Zero Temperature. Antioxidants (Basel). 9(4):325. https://doi.org/10.3390/antiox9040325

Sreekumar PG, Ferrington DA, Kannan R (2021) Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants (Basel) 10 (5): 661. https://doi.org/10.3390/antiox10050661

Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S, Shimizu T, Mizushima Y, Shirasawa T, Tsubota K (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Nat Acad Sci USA 103(30): 11282–11287. https://doi.org/10.1073/pnas.0602131103

Justilien V, Pang J-J, Renganathan K Zhan X, Crabb JW, Kim SR, Sparrow JR, Hauswirth WW, Lewin AS (2007) SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 48(10): 4407–4420. https://doi.org/10.1167/iovs.07-0432

Khandhadia S, Lotery A (2010) Oxidation and age-related macular degeneration: insights from molecular biology. Exp Rev Mol Med 12: e34. https://doi.org/10.1017/S146239941000164X

Ueta T, Inoue T, Furukawa T, Tamaki Y, Nakagawa Y, Imai H, Yanagi Y (2012) Glutathione peroxidase 4 is required for maturation of photoreceptor cells. J Biol Chem 287(10): 7675–7682. https://doi.org/10.1074/jbc.M111.335174

Hartong DT, Dange M, McGee TL, Berson EL, Dryja TP, Colman RF (2008) Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet 40(10): 1230–1234. https://doi.org/10.1038/ng.223

Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello, Galeotti, Ramponi G (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161(5): 933–944. https://doi.org/10.1083/jcb.200211118

Karlsson M, Frennesson C, Gustafsson T, Brunk UT, Nilsson SEG, Kurz T (2013) Autophagy of iron-binding proteins may contribute to the oxidative stress resistance of ARPE-19 cells. Exp Eye Res 116: 359–365. http://dx.doi.org/10.1016/j.exer.2013.10.014

Rozanowski B, Burke JM, Boulton ME, Sarna T, Różanowska M (2008) Human RPE melanosomes protect from photosensitized and iron-mediated oxidation but become pro-oxidant in the presence of iron upon photodegradation. Invest.Ophthalmol Vis Sci 49(7): 2838–2847. https://doi.org/10.1167/iovs.08-1700

Ostrovsky MA, Sakina NL, Dontsov AE (1987) An antioxidative role of ocular screening pigments. Vision Res 27(6): 893–899. https://doi.org/10.1016/0042-6989(87)90005-8

Richardson DR, Lane DJR, Becker EM, Huang ML-H, Whitnall M, Rahmanto YS, Sheftel AD, Ponka P (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. ProcNat Acad Sci USA 107(24): 10775–10782. https://doi.org/10.1073/pnas.091292510

Lu H, Hunt DM, Ganti R, Davis A, Dutt K, Alam J, Hunt RC (2002) Metallothionein protects retinal pigment epithelial cells against apoptosis and oxidative stress. Exp Eye Res 74(1): 83–92. https://doi.org/10.1006/exer.2001.1101

Guirola M, Pérez-Rafael S, Capdevila M, Palacios O, Atrian S (2012) Metal dealing at the origin of the Chordata phylum: the metallothionein system and metal overload response in amphioxus. PLoS One 7(8): e43299. https://doi.org/10.1371/journal.pone.0043299

Bonilha VL (2018) Oxidative Stress Regulation and DJ-1 Function in the Retinal Pigment Epithelium: Implications for AMD. Adv Exp Med Biol 1074:3–9. https://doi.org/10.1007/978-3-319-75402-4_1

Bergwik J, Kristiansson A, Allhorn M, Gram Magnus, Åkerström B (2021) Structure, Functions, and Physiological Roles of the Lipocalin α 1-Microglobulin (A1M). Front Physiol 12: 645650. https://doi.org/10.3389/fphys.2021.645650

Kaarniranta K, Salminen A, Eskelinen E-L, Kopitz J (2009) Heat shock proteins as gatekeepers of proteolytic pathways-Implications for age-related macular degeneration (AMD). Ageing Res Rev 8(2): 128–139. https://doi.org/10.1016/j.arr.2009.01.001

Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427(7): 1537–1548. https://doi.org/10.1016/j.jmb.2015.02.002

Zhou P, Kannan R, Spee C, Sreekumar PG, Dou G, Hinton DR (2014) Protection of retina by αB crystallin in sodium iodate induced retinal degeneration. PLoS One 9: e98275: 1–15. https://doi.org/10.1371/journal.pone.0098275

Strunnikova N, Baffi J, Gonzalez A, Silk W, Cousins SW, Csaky KG (2001) Regulated heat shock protein 27 expression in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 42(9): 2130–2138. https://iovs.arvojournals.org/article.aspx?articleid=2122898

Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32(9-10): 602–619. https://doi.org/10.1101/gad.314674.118.

Ryhanen T, Hyttinen JMT, Kopitz J, Rilla K, Kuusisto E, Mannermaa E, Viiri J, Holmberg CI, Immonen I, Meri S, Parkkinen J, Eskelinen E-L, Hannu U, Salminen A, Kaarniranta K (2009) Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 13(9B): 3616–3631. https://doi.org/10.1111/j.1582-4934.2008.00577.x

Song L, Li C, Xie Y, Liu S, Zhang J, Yao J, Jiang C, Li Y, Liu Z (2016) Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection. Fish Shellfish Immunol 49:154–62. https://doi.org/10.1016/j.fsi.2015.12.009

Arunkumar R, Gorusupudi A, Bernstein PS (2020) The macular carotenoids: A biochemical overview. Biochim Biophys Acta Mol Cell Biol Lipids 1865(11): 158617. https://doi.org/10.1016/j.bbalip.2020.158617

Yin J, Thomas F, Lang JC, Chaum E (2011) Modulation of oxidative stress responses in the human retinal pigment epithelium following treatment with vitamin C. J Cell Physiol 226(8): 2025–2032. https://doi.org/10.1002/jcp.22532

Duque P, Vieira CP, Bastos B, Vieira J (2022) The evolution of vitamin C biosynthesis and transport in animals. BMC Ecol Evol 22(1): 84. https://doi.org/10.1186/s12862-022-02040-7

van der Vliet A, Janssen-Heininger YM (2014) Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J Cell Biochem 115 (3): 427–435. https://doi.org/10.1002/jcb.24683

Giansanti V, Villalpando Rodriguez GE, Savoldelli M, Gioia R, Forlino A, Mazzini G, Pennati M, Zaffaroni N, Scovassi AI, Torriglia A (2013) Characterization of stress response in human retinal epithelial cells. J Cell Mol Med 17(1): 103–115. https://doi.org/10.1111/j.1582-4934.2012.01652.x

Tummers B, Green DR (2022) The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 102(1): 411–454. https://doi.org/10.1152/physrev.00002.2021

Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, Wang J (2021) Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal 19(1): 120. https://doi.org/10.1186/s12964-021-00799-8

Eckhart L, Ballaun C, Hermann M, VandeBerg JL, Sipos W, Uthman A, Fischer H, Tschachler E (2008) Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Mol Biol Evol (5): 831–841. https://doi.org/10.1093/molbev/msn012

Nagai H, Noguchi T, Takeda K, Ichijo H (2007) Pathophysiological roles of ASK1-MAP kinase signaling pathways. J Biochem Mol Biol 40(1): 1–6. https://doi.org/10.5483/BMBRep.2007.40.1.001

Lu L, Hackett S.F, Mincey A, Lai H, Campochiaro PA (2006) Effects of different types of oxidative stress in RPE cells. J Cell Physiol 206(1): 119–125. https://doi.org/10.1002/jcp.20439

Wu W-C, Hu D-N, Gao H-X, Chen M, Wang D, Rosen R, McCormick SA (2010) Subtoxic levels hydrogen peroxide-induced production of interleukin-6 by retinal pigment epithelial cells. Mol Vis 16: 1864–1873. http://www.molvis.org/molvis/v16/a202

Xu XZ, Tang Y, Cheng LB, Yao J, Jiang Q, Li -R, Zhen Y-F (2019) Targeting Keap1 by miR-626 protects retinal pigment epithelium cells from oxidative injury by activating Nrf2 signaling. Free Radic Biol Med 143: 387–396. https://doi.org/10.1016/j.freeradbiomed.2019.08.024

Cano M, Datta S, Wang L, Liu T, Flores-Bellver M, Sachdeva M, Sinha D, Handa JT (2021) Nrf2 deficiency decreases NADPH from impaired IDH shuttle and pentose phosphate pathway in retinal pigmented epithelial cells to magnify oxidative stress-induced mitochondrial dysfunction. Aging Cell 20: Article ID e13444 1–15. https://doi.org/10.1111/acel.13444

Ye S-S, Tang Y, Song J-T (2021) ATP and Adenosine in the Retina and Retinal Diseases. Front Pharmacol 12(654445): 1–8. https://doi.org/10.3389/fphar.2021.654445

Yang D, Elner SG, Clark AJ, Hughes BA, Petty HR, Elner VM (2011) Activation of P2X Receptors Induces Apoptosis in Human Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 52(3): 1522–1530. https://doi.org/10.1167/iovs.10-6172

Luthra S, Fardin B, Dong J, Hertzog D, Kamjoo S, Gebremariam S, Butani V, Narayanan R, Mungcal JK, Kuppermann BD, Kenney MCr (2006) Activation of Caspase-8 and Caspase-12 Pathways by 7-Ketocholesterol in Human Retinal Pigment Epithelial Cells. Inves Ophthalmol Vis Sci 47(12): 5569 –5575. https://doi.org/10.1167/iovs.06-0333

Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2(9): 645–652. https://doi.org/10.1038/35023595

Nita M, Grzybowski A (2020) Interplay between reactive oxygen species and autophagy in the course of age-related macular degeneration. EXCLI J (19): 1353–1371. https://doi.org/10.17179/excli2020-2915

Tang B, Cai J, Sun L, Li Y, Qu J, Snider BJ, Wu S (2014) Proteasome inhibitors activate autophagy involving inhibition of PI3K-Akt-mTOR pathway as an anti-oxidation defense in human RPE cells. PLoS One 9(7): e103364:1–8. https://doi.org/10.1371/journal.pone.0103364

Morescalchi F, Duse S, Gambicorti E, Romano MR, Costagliola C, Semeraro F (2013) Proliferative Vitreoretinopathy after Eye Injuries: An Overexpression of Growth Factors and Cytokines Leading to a Retinal Keloid. Mediators Inflamm 2013(269787): 1–12. https://doi.org/10.1155/2013/269787

Bian Z-M, Elner SG, Elner VM (2007) Regulation of VEGF mRNA Expression and Protein Secretion by TGF-β2 in Human Retinal Pigment Epithelial Cells. Exp Eye Res 84(5): 812–822. https://doi.org/10.1016/j.exer.2006.12.016

Pollreisz A, Afonyushkin T, Oskolkova OV, Gruber F, Bochkov VN, Schmidt-Erfurth U (2013) Retinal pigment epithelium cells produce VEGF in response to oxidized phospholipids through mechanisms involving ATF4 and protein kinase CK2DOI: Comparative Study. Exp Eye Res (116): 177–184. https://doi.org/10.1016/j.exer.2013.08.021

Grigoryan EN, Novikova YP, Gancharova OS, Philippov PP (2012) Newantioxidant SkQ1 is an effective protector of rat eye retinal pigment epithelium and choroid under conditions of long term organotypic cultivation. Adv Aging Res 1(2): 31–37. https://doi.org/10.4236/aar.2012.12004

Payne AJ, Kaja S, Naumchuk Y, Kunjukunju N, Koulen P (2014) Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina. Int J Mol Sci 15(2): 1865–1886. https://doi.org/10.3390/ijms15021865

Hsueh Y-J, Chen Y-N, Tsao Y-T, Cheng C-M, Wu W-C, Chen H-C (2022) The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int J Mol Sci 23: 1255. https://doi.org/10.3390/ijms23031255

Cho Y-K, Lee S-M, Kang Y-J, Kang Y-M, Jeon I-C, Park D-H (2022) The Age-Related Macular Degeneration (AMD)-Preventing Mechanism of Natural Products. Processes 10(4):678. https://doi.org/10.3390/pr10040678

Grebowski J, Kazmierska P, Krokosz A (2013) Fullerenols as a new therapeutic approach in nanomedicine. BioMed Res Int 2013:751913. https://doi.org/10.1155/2013/751913

Josifovska N, Albert R, Nagymihály R, Lytvynchuk L, Moe MC, Kaarniranta K, Veréb ZJ, Petrovski G (2020) Resveratrol as Inducer of Autophagy, Pro-Survival, and Anti-Inflammatory Stimuli in Cultured Human RPE Cells. Int J Mol Sci 21:813. https://doi.org/10.3390/ijms21030813

Biswal R, Justis BD, Han P, Li H, Gierhart D, Dorey Cheryl K, Lewin AS (2018) Daily zeaxanthin supplementation prevents atrophy of the retinal pigment epithelium (RPE) in a mouse model of mitochondrial oxidative stress. PLoS One 13(9): e0203816. https://doi.org/10.1371/journal.pone.0203816

Qin S, McLaughlin AP, De Vries GW (2006) Protection of RPE cells from oxidative injury by 15-deoxy-Δ12,14-prostaglandin J2 by augmenting GSH and activating MAPK. Invest Ophthalmol Vis Sci (47): 5098–5105. https://doi.org/10.1167/iovs.06-0318

Jitsanong T, Khanobdee K, Piyachaturawat P, Wongprasert K (2011) Diarylheptanoid 7-(3,4 dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene from Curcuma comosa Roxb. protects retinal pigment epithelial cells against oxidative stress-induced cell death. Toxicol In Vitro 25(1): 167–176. https://doi.org/10.1016/j.tiv.2010.10.014

Nakamura S, Hayashi K, Takizawa H, Murase T, Tsuruma K, Shimazawa M, Kakuta H, Nagasawa H, Hara H (2011) An arylidene-thiazolidinedione derivative, GPU-4, without PPARγ activation, reduces retinal neovascularization. Curr Neurovasc Res. 8(1): 25–34. https://doi.org/10.2174/156720211794520224

Chen M, Wang J, Yang Y, Zhong T, Zhou P, Ma H, Li J, Li D, Zhou J, Xie S, Liu M (2021) Redox dependent Regulation of End-Binding Protein 1 Activity by Glutathionylation. Sci China Life Sci 64(4): 575–583. https://DOI:10.1007/s11427-020-1765-6

Ciesielska S, Slezak-Prochazka I, Bil P, Rzeszowska-Wolny J (2021) Micro RNAs in Regulation of Cellular Redox Homeostasis. Int J Mol Sci 22(11): 6022. https://doi.org/10.3390/ijms22116022

Intartaglia D, Giamundo G, Conte I (2021) The Impact of miRNAs in Health and Disease of Retinal Pigment Epithelium. Front Cell Dev Biol 8: 589985. https://doi.org/10.3389/fcell.2020.589985

Hadziahmetovic M, Song Y, Wolkow N, Iacovelli J, Grieco S, Lee J, Lyubarsky A, Pratico D, Connelly J, Spino M, Harris ZL, Dunaief JL (2011) The oral iron chelator deferiprone protects against iron overload-induced retinal degeneration. Invest Ophthalmol Vis Sci 52(2): 959–968. https://doi.org/10.1167/iovs.10-6207

Wu L, Tan X, Liang L, Zhang D , Kijlstra A , Yang P (2017) The Role of Mitochondria-Associated Reactive Oxygen Species in the Amyloid β Induced Production of Angiogenic Factors by ARPE-19 Cells. Curr Mol Med 17(2): 140–148. https://doi.org/10.2174/1566524017666170331162616

Wu J, Cui D, Li H, Zeng J (2022) Protective effects of NAC and salubrinal on apoptosis of retinal pigment epithelial cells induced by all-trans retinoic acid. Eur J Ophthalmol 32(1): 395–401. https://doi.org/10.1177/11206721211000674

Cheng L, Yu H, Yan N, Lai K, Xiang M (2017) Hypoxia-Inducible Factor-1 alpha Target Genes Contribute to Retinal Neuroprotection. Front Cell Neurosci 11: 20. https://doi.org/10.3389/fncel.2017.00020

Liu J, Lu W, Reigada D, Nguyen J, Laties AM, Mitchell CH (2008) Restoration of Lysosomal pH in RPE Cells from Cultured Human and ABCA4(-/-) Mice: Pharmacologic Approaches and Functional Recovery. Invest Ophthalmol Vis Sci 49(2): 772–780. https://doi.org/10.1167/iovs.07-0675

Pavan B, Capuzzo A, Forlani G (2014) High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels. Exp Eye Res (120): 50–54. https://doi.org/10.1016/j.exer.2013.12.006

Alcazar O, Cousins SW, Marin-Castano ME (2007) MMP-14 and TIMP2 Overexpression Protects Against Hydroquinone-Induced Oxidant Injury in RPE: Implications for Extracellular Matrix Turnover. Invest Ophthalmol Vis Sci 48 (12): 5662–5670. https://doi.org/10.1167/iovs.07-0392

Chong C-M, Zheng W (2016) Artemisinin Protects Human Retinal Pigment Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Damage through Activation of ERK/CREB Signaling. Redox Biol 9: 50–56. https://doi.org/10.1016/j.redox.2016.06.002

Patel AK, Hackam AS (2013) Toll-like Receptor 3 (TLR3) Protects Retinal Pigmented Epithelium (RPE) Cells from Oxidative Stress through a STAT3-Dependent Mechanism. Mol Immunol 54(2): 122–131. https://doi.org/10.1016/j.molimm.2012.11.005

Dorion M-F, Mulumba M, Kasai S, Itoh K, Lubell WD, Ong H (2021) The CD36 Ligand-Promoted Autophagy Protects Retinal Pigment Epithelial Cells from Oxidative Stress. Oxid Med Cell Longev 2021: 6691402. https://doi.org/10.1155/2021/6691402

Barbosa KY, Chang J, Lal M, Bharti K (2017) The Role of Oxidative Stress Pathway in RPE Epithelial to Mesenchymal Transition. Invest Ophthalmol Vis Sci 58: 3010.

Grigoryan EN, Markitantova YuV (2021) Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Devel Biol 52(4): 220–243. https://doi.org/10.1134/S106236042104003

Carbonell-MB, Zapata Cardona J, Delgado JP (2022) Post-amputation reactive oxygen species production is necessary for axolotl limb regeneration. Front Cell Dev Biol 10: 921520. https://doi.org/10.3389/fcell.2022.921520

Hameed LS, Berg DA, Belnoue L, Jensen LD, Cao Y, Simon A. (2015) Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain. Elife 4: e08422. https://doi.org/10.7554/eLife.08422.001

Rieger S, Sagasti A (2011) Hydrogen peroxide promotes injury induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 9(5): e1000621. https://doi.org/10.1371/journal.pbio.1000621

Rossnerova A, Izzotti A, Pulliero A, Bast A, Rattan SIS, Rossner P (2020) The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int J Mol Sci 21(19): 7053. https://doi.org/10.3390/ijms21197053

de Sousa AA, Todorov OS, Proulx MJ (2022) A natural history of vision loss: Insight from evolution for human visual function. Neurosci Biobehav Rev 134: 104550. https://doi.org/10.1016/j.neubiorev.2022.104550