ВЛИЯНИЕ РАЗЛИЧНЫХ АГОНИСТОВ РЕЦЕПТОРА ЛЮТЕИНИЗИРУЮЩЕГО ГОРМОНА НА СТЕРОИДОГЕНЕЗ В ЯИЧНИКАХ ПОЛОВОЗРЕЛЫХ САМОК КРЫС
PDF

Ключевые слова

аллостерический агонист
овариальный стероидогенез
рецептор лютеинизирующего гормона
хорионический гонадотропин человека
половозрелые крысы
прогестерон
цитохром P450c17

Аннотация

Для стимуляции овариального стероидогенеза и контролируемой индукции овуляции в клинике применяют препараты гонадотропинов – хорионического гонадотропина человека (ХГЧ) и лютеинизирующего гормона (ЛГ), которые, однако, имеют ряд побочных эффектов, таких как снижение чувствительности яичников к эндогенному ЛГ и синдром гиперстимуляции яичников. Альтернативой ХГЧ и ЛГ могут стать аллостерические агонисты рецептора ЛГ/ХГЧ, в том числе разработанное нами тиено-[2,3-d]-пиримидиновое производное TP03. Целью работы было изучить влияние TP03 (40 мкг/кг, в/б) и взятого для сравнения ХГЧ (30 МЕ/крысу, п/к) на овариальный стероидогенез у половозрелых самок крыс, находящихся в фазе позднего проэструса, в том числе обработанных антагонистом гонадолиберина Оргалутраном (100 мкг/кг, п/к, за 3 ч до введения TP03 или ХГЧ). В крови крыс оценивали уровни эстрадиола, прогестерона и ЛГ, в яичниках – экспрессию генов стероидогенеза (Star, Cyp11a1, Hsd3b, Cyp17a1, Hsd17b, Cyp19a1) и рецептора ЛГ/ХГЧ (Lhcgr). Через 3 ч после введения TP03 и ХГЧ повышали уровень прогестерона в крови, стимулировали экспрессию генов холестерин-транспортирующего белка StAR, цитохрома P450c17 и ароматазы (цитохрома P450c19), и этот эффект выявлялся как у контрольных крыс с нормальным уровнем ЛГ, так и у Оргалутран-обработанных крыс с пониженным уровнем ЛГ. Эффекты TP03 были сопоставимы с таковыми ХГЧ, но в отличие от ХГЧ аллостерический агонист не снижал функционирования гипоталамо-гипофизарно-гонадной оси, на что указывает отсутствие его влияния на уровень ЛГ в крови и экспрессию рецепторов ЛГ/ХГЧ. Полученные данные свидетельствует о способности TP03 эффективно стимулировать овариальный стероидогенез и указывают на перспективность разработки на его основе лекарственных форм для контролируемой индукции овуляции.

PDF

Литература

Martinez F, Racca A, Rodríguez I, Polyzos NP (2021) Ovarian stimulation for oocyte donation: a systematic review and meta-analysis. Hum Reprod Update 27(4):673–696. https://doi.org/10.1093/humupd/dmab008

Namavar Jahromi B, Parsanezhad ME, Shomali Z, Bakhshai P, Alborzi M, Moin Vaziri N, Anvar Z (2018) Ovarian Hyperstimulation Syndrome: A Narrative Review of Its Pathophysiology, Risk Factors, Prevention, Classification, and Management. Iran J Med Sci 43(3):248–260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993897

Engmann LL, Maslow BS, Kaye LA, Griffin DW, DiLuigi AJ, Schmidt DW, Grow DR, Nulsen JC, Benadiva CA (2019) Low dose human chorionic gonadotropin administration at the time of gonadotropin releasing-hormone agonist trigger versus 35 h later in women at high risk of developing ovarian hyperstimulation syndrome - a prospective randomized double-blind clinical trial. J Ovarian Res 12(1):8. https://doi.org/10.1186/s13048-019-0483-7

Jiang X, Dias JA, He X (2014) Structural biology of glycoprotein hormones and their receptors: insights to signaling. Mol Cell Endocrinol 382(1):424–451. https://doi.org/10.1016/j.mce.2013.08.021

Casarini L, Simoni M (2021) Recent advances in understanding gonadotropin signaling. Fac Rev 10:41. https://doi.org/10.12703/r/10-41

Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, Simoni M, Casarini L, Ayoub MA (2017) Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors. Sci Rep 7(1):940. https://doi.org/10.1038/s41598-017-01078-8

Segaloff DL, Wang HY, Richards JS (1990) Hormonal regulation of luteinizing hormone/chorionic gonadotropin receptor mRNA in rat ovarian cells during follicular development and luteinization. Mol Endocrinol 4(12):1856–1865. https://doi.org/10.1210/mend-4-12-1856

Menon B, Sinden J, Franzo-Romain M, Botta RB, Menon KM (2013) Regulation of LH receptor mRNA binding protein by miR-122 in rat ovaries. Endocrinology 154(12):4826–4834. https://doi.org/10.1210/en.2013-1619

Menon B, Gulappa T, Menon KM (2015) miR-122 Regulates LH Receptor Expression by Activating Sterol Response Element Binding Protein in Rat Ovaries. Endocrinology 156(9):3370–3380. https://doi.org/10.1210/en.2015-1121

Veldhuis JD, Liu PY, Takahashi PY, Keenan DM (2012) Dynamic testosterone responses to near-physiological LH pulses are determined by the time pattern of prior intravenous LH infusion. Am J Physiol Endocrinol Metab 303(6):E720–728. https://doi.org/10.1152/ajpendo.00200.2012

Bakhtyukov AA, Derkach KV, Gureev MA, Dar'in DV, Sorokoumov VN, Romanova IV, Morina IY, Stepochkina AM, Shpakov AO (2020) Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. Int J Mol Sci 21(20):7493. https://doi.org/10.3390/ijms21207493

Bakhtyukov AA, Derkach KV, Romanova IV, Sorokoumov VN, Sokolova TV, Govdi AI, Morina IYu, Perminova AA, Shpakov AO (2021) Effect of low-molecular-weight allosteric agonists of the luteinizing hormone receptor on its expression and distribution in rat testes. J Evol Biochem Physiol 57(2):208–220. https://doi.org/10.1134/S0022093021020034

Heitman LH, Oosterom J, Bonger KM, Timmers CM, Wiegerinck PH, Ijzerman AP (2008) [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor. Mol Pharmacol 73(2):518–524. https://doi.org/10.1124/mol.107.039875

van Koppen CJ, Zaman GJ, Timmers CM, Kelder J, Mosselman S, van de Lagemaat R, Smit MJ, Hanssen RG (2008) A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch Pharmacol 378(5):503–514. https://doi.org/10.1007/s00210-008-0318-3

Nataraja SG, Yu HN, Palmer SS (2015) Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors. Front Endocrinol (Lausanne) 6:142. https://doi.org/10.3389/fendo.2015.00142

Derkach KV, Dar'in DV, Lobanov PS, Shpakov AO (2014) Intratesticular, intraperitoneal, and oral administration of thienopyrimidine derivatives increases the testosterone level in male rats. Dokl Biol Sci 459:326–329. https://doi.org/10.1134/S0012496614060040

Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO (2021) The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 23(1):198. https://doi.org/10.3390/ijms23010198

Cora MC, Kooistra L, Travlos G (2015) Vaginal Cytology of the Laboratory Rat and Mouse: Review and Criteria for the Staging of the Estrous Cycle Using Stained Vaginal Smears. Toxicol Pathol 43(6):776–793. https://doi.org/10.1177/0192623315570339

Ajayi AF, Akhigbe RE (2020) Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract 6:5. https://doi.org/10.1186/s40738-020-00074-3

Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73

van de Lagemaat R, Timmers CM, Kelder J, van Koppen C, Mosselman S, Hanssen RG (2009) Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor. Hum Reprod 24(3):640–648. https://doi.org/10.1093/humrep/den412

van de Lagemaat R, Raafs BC, van Koppen C, Timmers CM, Mulders SM, Hanssen RG (2011) Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and rec-LH. Endocrinology 152(11):4350–4357. https://doi.org/10.1210/en.2011-1077

Gerrits M, Mannaerts B, Kramer H, Addo S, Hanssen R (2013) First evidence of ovulation induced by oral LH agonists in healthy female volunteers of reproductive age. J Clin Endocrinol Metab 98(4):1558–1566. https://doi.org/10.1210/jc.2012-3404

Wortmann L, Lindenthal B, Muhn P, Walter A, Nubbemeyer R, Heldmann D, Sobek L, Morandi F, Schrey AK, Moosmayer D, Günther J, Kuhnke J, Koppitz M, Lücking U, Röhn U, Schäfer M, Nowak-Reppel K, Kühne R, Weinmann H, Langer G (2019) Discovery of BAY-298 and BAY-899: Tetrahydro-1,6-naphthyridine-Based, Potent, and Selective Antagonists of the Luteinizing Hormone Receptor Which Reduce Sex Hormone Levels in Vivo. J Med Chem 62(22):10321–10341. https://doi.org/10.1021/acs.jmedchem.9b01382

Derkach KV, Dar’in DV, Shpakov AO (2020) Low-Molecular-Weight Ligands of Luteinizing Hormone with the Activity of Antagonists. Biochemistry (Moscow) Suppl Ser A: Membrane and Cell Biology 14(3):223–231. https://doi.org/10.1134/S1990747820030034

Broqua P, Riviere PJ, Conn PM, Rivier JE, Aubert ML, Junien JL (2002) Pharmacological profile of a new, potent, and long-acting gonadotropin-releasing hormone antagonist: degarelix. J Pharmacol Exp Ther 301(1):95–102. https://doi.org/10.1124/jpet.301.1.95

Weiss JM, König SJ, Polack S, Emons G, Schulz KD, Diedrich K, Ortmann O (2006) Actions of gonadotropin-releasing hormone analogues in pituitary gonadotrophs and their modulation by ovarian steroids. J Steroid Biochem Mol Biol 101(2-3):118–126. https://doi.org/10.1016/j.jsbmb.2006.06.009

Smith MS, Freeman ME, Neill JD (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96(1):219–226. https://doi.org/10.1210/endo-96-1-219

Donner NC, Lowry CA (2013) Sex differences in anxiety and emotional behavior. Pflugers Arch 465(5):601–626. https://doi.org/10.1007/s00424-013-1271-7

Manna PR, Dyson MT, Stocco DM (2009) Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 15(6):321–333. https://doi.org/10.1093/molehr/gap025

Shpakov AO, Derkach KV, Dar’in DV, Lobanov PS (2014) Activation of adenylyl cyclase by thienopyrimidine derivatives in rat testes and ovaries. Cell Tissue Biol 8(5):400–406. https://doi.org/10.1134/S1990519X14050071

Derkach KV, Dar’in DV, Bakhtyukov AA, Lobanov PS, Shpakov AO (2016) In vitro and in vivo studies of functional activity of new low molecular weight agonists of the luteinizing hormone receptor. Biochemistry (Moscow) Suppl Ser A: Membrane and Cell Biology 10(4):294–300. https://doi.org/10.1134/S1990747816030132

Manna PR, Stetson CL, Slominski AT, Pruitt K (2016) Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 51(1):7–21. https://doi.org/10.1007/s12020-015-0715-6

Patel SS, Beshay VE, Escobar JC, Carr BR (2010) 17α-Hydroxylase (CYP17) expression and subsequent androstenedione production in the human ovary. Reprod Sci 17(11):978–986. https://doi.org/10.1177/1933719110379055

Beshay VE, Havelock JC, Sirianni R, Ye P, Suzuki T, Rainey WE, Carr BR (2007) The mechanism for protein kinase C inhibition of androgen production and 17alpha-hydroxylase expression in a theca cell tumor model. J Clin Endocrinol Metab 92(12):4802–4809. https://doi.org/10.1210/jc.2007-1394

Hedin L, Rodgers RJ, Simpson ER, Richards JS (1987) Changes in content of cytochrome P450(17)alpha, cytochrome P450scc, and 3-hydroxy-3-methylglutaryl CoA reductase in developing rat ovarian follicles and corpora lutea: correlation with theca cell steroidogenesis. Biol Reprod 37(1):211–223. https://doi.org/10.1095/biolreprod37.1.211

Conley AJ, Howard HJ, Slanger WD, Ford JJ (1994) Steroidogenesis in the preovulatory porcine follicle. Biol Reprod 51(4):655–661. https://doi.org/10.1095/biolreprod51.4.655

Peña-Rico M, Guadalupe Ortiz-López M, Camacho-Castillo L, Cárdenas M, Pedraza-Chaverri J, Menjívar M (2006) Steroidogenic impairment due to reduced ovarian transcription of cytochrome P450 side-chain-cleavage (P450scc) and steroidogenic acute regulatory protein (StAR) during experimental nephrotic syndrome. Life Sci 79(7):702–708. https://doi.org/10.1016/j.lfs.2006.02.023

Lavoie HA, King SR (2009) Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood) 234(8):880–907. https://doi.org/10.3181/0903-MR-97

Lephart ED, Doody KJ, McPhaul MJ, Simpson ER (1992) Inverse relationship between ovarian aromatase cytochrome P450 and 5 alpha-reductase enzyme activities and mRNA levels during the estrous cycle in the rat. J Steroid Biochem Mol Biol 42(5):439–447. https://doi.org/10.1016/0960-0760(92)90255-h

Zurvarra FM, Salvetti NR, Mason JI, Velazquez MM, Alfaro NS, Ortega HH (2009) Disruption in the expression and immunolocalisation of steroid receptors and steroidogenic enzymes in letrozole-induced polycystic ovaries in rat. Reprod Fertil Dev 21(7):827–839. https://doi.org/10.1071/RD09026