АНАЛИЗ СОСТАВА ФРАКЦИИ ИЗ ОСМОТИЧЕСКИ АКТИВНЫХ БЕЛКОВ СЫВОРОТКИ КРОВИ АТЛАНТИЧЕСКОЙ ТРЕСКИ GADUS MORHUA
Home

Ключевые слова

атлантическая треска
белки сыворотки крови
электрофорез
MALDI

Аннотация

Предприняты поиск и идентификация осмотически активных белков (ОАБ) в сыворотке крови атлантической трески Gadus morhua с использованием методов электрофореза в полиакриламидном геле и масс-спектрометрии MALDI. Было идентифицировано 17 ОАБ. В соответствии с аннотациями генной онтологии кандидатов, 13 ОАБ отнесены к внеклеточным, а 4 ОАБ – к внутриклеточным белкам. Относительное содержание ОАБ в сыворотке трески составило ~50% от общего белка. В пуле ОАБ доминировали внеклеточные белки аполипопротеины (в составе липопротеинов высокой плотности) и гемопексины, причем относительное содержание первых составило ~25% общего белка сыворотки. Из внутриклеточных белков на протеомной карте сыворотки доминировали низкомолекулярные фрагменты тяжелой цепи миозина. Полученные результаты согласуются с положениями «безальбуминовой» гипотезы капиллярного обмена, которая в качестве осмотически активных белков плазмы «безальбуминовых» костистых рыб рассматривает множественные внеклеточные и внутриклеточные белки разных функциональных классов.

https://doi.org/10.31857/S004445292302002X
Home

Литература

Levitt D, Levitt M (2016) Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med 9:229–255. https://doi.org/10.2147/IJGM.S102819

Schulz G E, Schirmer R H (1979) Principles of Protein Structure. New York: Springer-Verlag, 314 p.

Dziegielewska KM, Evans CA, Fossan G. et al. (1980) Proteins in cerebrospinal fluid and plasma of fetal sheep during development. J Physiol 300:441–455. https://doi.org/10.1113/jphysiol.1980.sp013171

Majorek KA, Porebski PJ, Dayal A et al (2012) Structural and immunologic characterization of bovine, horse, andrabbit serum albumins. Mol Immunol 52(3–4):174–182. https://doi.org/10.1016/j.molimm.2012.05.011

Anguizola J, Matsuda R, Barnaby OS et al (2013) Review: glycation of human serum albumin. Clin Chim Acta 425:64–76.

https://doi.org/10.1016/j.cca.2013.07.013

Gray JE, Doolittle RF (1992) Characterization, primary structure, and evolution of lamprey plasma albumin. Protein Sci 1(2):289–302. https://doi.org/10.1002/pro.5560010211

Byrnes L, Gannon F (1990) Atlantic salmon (Salmo salar) serum albumin: cDNA sequence, evolution, and tissue expression. DNA Cell Biol 9(9):647–655. https://doi.org/10.1089/dna.1990.9.647

Metcalf V, Brennan S, Chambers G, George P (1998) The albumins of Chinook salmon (Oncorhynchus tshawytscha) and brown trout (Salmo trutta) appear to lack a propeptide. Arch Biochem Biophys 350(2):239–244. https://doi.org/10.1006/abbi.1997.0509

Metcalf VJ, Brennan SO, Chambers GK, George PM (1998) The albumin of the brown trout (Salmo trutta) is a glycoprotein. Biochim Biophys Acta 1386(1):90–96.

Xu Y, Ding Z (2005) N-terminal sequence and main characteristics of Atlantic salmon (Salmo salar) albumin. Prep Biochem Biotechnol 35(4):283–290. https://doi.org/10.1080/10826060500218081

Li S, Cao Y, Geng F (2017) Genome-wide identification and comparative analysis of albumin family in vertebrates. Evol Bioinf Online 13:1. https://doi.org/10.1177/1176934317716089

Ballantyne JS (2016) Some of the most interesting things we know, and don't know, about the biochemistry and physiology of elasmobranch fishes (sharks, skates and rays). Comp Biochem Physiol B Biochem Mol Biol 199:21–28. https://doi.org/10.1016/j.cbpb.2016.03.005

Andreeva AM (2022) Evolutionary transformations of albumin using the example of model species of jawless Agnatha and bony jawed fish (review). Inland Water Biology 15(5):641–658. https://doi.org/10.1134/S1995082922050029

Andreeva AM (2020) Structural organization of plasma proteins as a factor of capillary filtration in Pisces. Inland Water Biology 13(4):664–673. https://doi.org/ 10.1134/S1995082920060036

Michelis R, Sela S, Zeitun T, Geron R, Kristal B (2016) Unexpected normal colloid osmotic pressure in clinical states with low serum albumin. PLoS One 11(7):e0159839. https://doi.org/10.1371/journal.pone.0159839

Gaal O, Medgyesi GA, Vereczkey L (1980) Electrophoresis in the separation of biological macromolecules. Chichester, John Wiley & Sons, 83–87.

Andreeva AM (2021) Organization and function of osmotically active fraction of fish (Pisces) plasma proteome. Inland Water Biology 14(4):449–460. https://doi.org/ 10.1134/S1995082921040039

Michel CC (1997) Starling: the formulation of his hypothesis ofmicrovascular fluid exchange and its significance after 100 years. Exp Physiol 82:1–30. https://doi.org/10.1113/expphysiol.1997.sp004000

Weinbaum S (1998) Whitaker distinguished lecture: model tosolve mysteries in biomechanics at the cellular level; a newview of fiber matrix layers. Ann Biomed Eng 26:627–643. https://doi.org/10.1114/1.134

Adamson RH, Lenz JF, Zhang X. et al. (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557(3): 889–907. https://doi.org/10.1113/jphysiol.2003.058255

Rosengren BI, Carlsson O, Venturoli D, Rayyes O, Rippe B (2004) Transvascular passage of macromolecules into the peritoneal cavity of normo- and hypothermic rats in vivo: active or passivetransport? J Vasc Res 41:123–130. https://doi.org/10.1159/000077131

Curry FE, Adamson RH (2012) Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 40:828–839. https://doi.org/10.1007/s10439-011-0429-8

Chappell D, Jacob M (2014) Role of the glycocalyx in fluid management: small things matter. Best Pract Res Clin Anaesthesiol 28:227–234. https://doi.org/10.1016/j.bpa.2014.06.003

Itzhaki RF, Gill DM (1964) A micro-biuret method for estimatingproteins. Anal Biochem 9:401–410.

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

Kirpichnikov VS (1987) Genetics and selectics of fish. Leningrad. Nauka. 520 p. (In Russ).

Andreeva AM, Lamash NE, Serebryakova MV, Ryabtseva IP, Bolshakov VV (2015) Reorganization of low-molecular-weight fraction of plasma proteins in the annual cycle of Cyprinidae. Biochemistry (Mosc) 80(2):208–218. https://doi.org/10.1134/S0006297915020078

Andreeva AM, Serebryakova MV, Lamash N (2017) Oligomeric protein complexes of apolipoproteins stabilize the internal fluid environment of organism in redfins of the Tribolodon genus [Pisces; Cypriniformes, Cyprinidae]. Comp Biochem Physiol D 22:90–97. http://dx.doi.org/10.1016/j.cbd.2017.02.007

Andreeva AM, Vasiliev AS, Toropygin IY, Garina DV, Lamash N, Filippova A (2019) Involvement of apolipoprotein A in maintaining tissue fluid balance in goldfish Carassius auratus. Fish Physiol Biochem 45(5):1717–1730. https://doi.org/10.1007/s10695-019-00662-1

Andreeva AM, Toropygin IYu , Garina DV, Lamash NE, Vasiliev AS (2020) The Role of High-Density Lipoproteins in Maintaining Osmotic Homeostasis in the Goldfish Carassius auratus L. (Cyprinidae). J Evol Biochem Physiol 56:102–112. https://doi.org/10.1134/S0022093020020027

Choudhury M, Yamada S, Komatsu M, Kishimura H, Ando S (2009) Homologue of mammalian apolipoprotein A-II in non-mammalian vertebrates. Acta Biochim Biophys Sin (Shanghai) 41(5):370–378. https://doi.org/10.1093/abbs/gmp015

Babin PJ, Vernier JM (1989) Plasma lipoproteins in fish. J Lipid Res 30:467.

Stoletov K, Fang L, Soo-Ho Choin, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier Ph, Witztum J, Klemke R, Miller Yu (2009) Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circul Res 104:952–960. https://doi.org/10.1161/CIRCRESAHA.108.189803

Andreeva AM (2019) The strategies of organization of the fishplasma proteome: with and without albumin. Russ J Mar Biol 45(4):263–274. https://doi.org/10.1134/S1063074019040023

Saito H, Lund-Katz S, Phillips M (2004) Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Progress in Lipid Research 43(4):350–380. https://doi.org/10.1016/j.plipres.2004.05.002

Diaz-Rosales P, Pereiro P, Figueras A, Novoa B, Dios S (2014) The warmtemperature acclimation protein (Wap65) has an important role in the inflammatory response of turbot (Scophthalmus maximus). Fish Shellfish Immunol 41(1): 80–92. https://doi.org/10.1016/j.fsi.2014.04.012

Sha Z, Peng Xu, Tomokazu T, Hong Liu, Terhune J (2008) The warm temperature acclimation protein Wap65 as an immuneresponse gene: its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 45(5):1458–1469. https://doi.org/10.1016/j.molimm.2007.08.012

Sarropoulou E, Fernandes J M O, Mitter K, Magoulas A, Mulero V, Sepulcre M, Figueras A, Novoa B (2010) Evolution of a multifunctional gene: the warm temperature acclimation protein Wap65 in the European seabass Dicentrarchus labrax. Molecular Phylogenetics and Evolution 55(2): 640–649. https://doi.org/10.1016/j.ympev.2009.10.001

Cho YS, Kim BS, Kim DS, Nam YK (2012) Modulation of warm-temperature acclimation- associated 65-kDa protein genes (Wap65-1 and Wap65-2) in mud loach (Misgurnus mizolepis, Cypriniformes) liver in response to different stimulatory treatments Fish Shellfish Immunol 32(5):662–669. https://doi.org/10.1016/j.fsi.2012.01.009

Li Ch, Gao Ch, Fu Q, Su B, Chen J (2017) Identification and expression analysis of fetuin B (FETUB) in turbot (Scophthalmus maximus L.) mucosal barriers following bacterial challenge. Fish & Shellfish Immunol 68:386–394. https://doi.org/10.1016/j.fsi.2017.07.032

Janciauskiene S (2001) Conformational properties of serineproteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta 1535(3):221. https://doi.org/10.1016/s0925-4439(01)00025-4

Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8(9):R196. https://doi.org/10.1186/gb-2007-8-9-r196.PMID: 17877792

Poukkula M, Kremneva E, Serlachius M, Lappalainen P (2011) Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 68(9):471–490. https://doi.org/ 10.1002/cm.20530.

Otis J, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, Cerchione DM, Ceasrine AM, Avraham-David I, Tempelhof H, Yaniv K, Farber SA (2015) Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 8(3):295–309. https://doi.org/10.1242/dmm.018754

Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai R, Conrads TP, Veenstra TD, Adkins JN, Pounds JG, Fagan R, Lobley A (2004) The human plasma proteome: a nonredundant list developedby combination of four separate sources. Mol Cell Proteomics 3:311–326. https://doi.org/10.1074/mcp.M300127-MCP200

Nguyen MK, Kurtz I (2006) Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration. J Appl Physiol 100:1293–1300. https://doi.org/10.1152/japplphysiol.01274.2005

Olson KR (1992) Blood and extracellular fluid volume regulation: role of the renin-angiotensin system, kallikrein-kinin system, and atrial natriuretic peptides. Fish Physiology 12(B):135–234. https://doi.org/10.1016/S1546-5098(08)60010-2

Olson KR, Kinney DW, Dombrowski RA, Duff DW (2003) Transvascular and intravascular fluid transport in the rainbow trout: revisiting Starling’s forces, the secondary circulation and interstitial compliance. J Exp Biol 206(3): 457–467. https://doi.org/10.1242/jeb.00123

Sarin H (2010) Physiologic upper limits of pore size of differentblood capillary types and another perspective on the dualpore theory of microvascular permeability. J Angiog Res 2(1):14. https://doi.org/10.1186/2040-2384-2-14

De Smet H, Blust R, Moens L (1998) Absence of albumin in the plasma of the common carp Cyprinus carpio: binding of fatty acids to high density lipoprotein. Fish Physiol Biochem. 19(1):71–81.

Chen J, Yu H Shi, Hai Q Hu, He Niu, Ming Y Li (2009) Apolipoprotein A-I, a hyperosmoic adaptation-related protein in ayu (Plecoglossus altivelis). Comp Biochem Physiol B 152:196–201. https://doi.org/10.1016/j.cbpb.2008.11.005

Andreeva AM., Martemyanov V, Vasiliev AS, Toropygin IYu., Lamash N, Garina DV, Pavlov D (2022) Goldfish as a model for studying the effect of hypernatremia on blood plasma lipoproteins. Bratisl Med J 123(3):172–177. https://doi.org/10.4149/BLL_2022_028