ВЛИЯНИЕ ИНТРАНАЗАЛЬНО ВВОДИМЫХ ИНСУЛИНА И ГАНГЛИОЗИДОВ НА ГИПОТАЛАМИЧЕСКИЙ СИГНАЛИНГ И ЭКСПРЕССИЮ ГЕНОВ ГЛЮКОНЕОГЕНЕЗА В ПЕЧЕНИ КРЫС С САХАРНЫМ ДИАБЕТОМ 2-ГО ТИПА
PDF

Ключевые слова

инсулин
ганглиозиды
интраназальное введение
гипоталамус
сигнальные пути
сахарный диабет 2-го типа

Аннотация

Инсулиновая сигнальная система в гипоталамических нейронах играет важную роль в центральной регуляции метаболизма глюкозы, пищевого поведения и чувствительности тканей к инсулину. Снижение содержания инсулина в мозге при метаболических расстройствах, в том числе при диабете, является причиной низкой активности ключевых протеинкиназ, регулируемых через инсулиновую систему. Недостаток гормона в мозге, может быть компенсирован за счет интраназально вводимого инсулина, который доставляется непосредственную в мозг. Его эффективность может быть повышена посредством совместного использования с веществами, усиливающими действие инсулина в мозге, к числу которых принадлежат сложные гликосфинголипиды ганглиозиды. Целью работы было изучить влияние раздельного и совместного интраназального введения инсулина (0.5 МЕ/крысу/сутки) и ганглиозидов (6 мг/кг/сутки) крысам линии Wistar с экспериментальным сахарным диабетом 2-го типа (СД2) на активность ключевых компонентов инсулинового сигналинга (Akt, GSK-3β, ERK1/2, p70S6K и AMPK) в гипоталамусе, а также на экспрессию генов (GLUT2, FASN, PCK, G6PC и FBP), ответственных за метаболизм глюкозы в печени. Впервые установлено, что совместные интраназальные введения инсулина и ганглиозидов крысам с СД2 приводят к восстановлению толерантности к глюкозе, улучшению чувствительности тканей к инсулину, усилению обменных процессов и подавлению глюконеогенеза в гепатоцитах печени. Это происходит во многом благодаря центральному синхронизированному влиянию инсулина и ганглиозидов на функциональную активность ключевых белков инсулинового сигналинга (GSK3β, p70S6K, ERK1/2, AMPK) в гипоталамусе, а также вследствие восстановления экспрессии BDNF и снижения мРНК воспалительного цитокина IL-1β в гипоталамических нейронах. Таким образом, совместное интраназальное введение инсулина и ганглиозидов крысам с СД2 в значительной степени восстанавливает у них инсулиновый сигналинг в гипоталамусе и контроль глюконеогенеза в печени, нарушенные в условиях диабетической патологии.

https://doi.org/10.31857/S0044452922060122
PDF

Литература

Petersen MC, Shulman GI (2018) Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 98:2133–2223. https://doi.org/10.1152/physrev.00063.2017

Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083. https://doi.org/10.1016/S0140-6736(13)62154-6

Schwartz MW, Seeley RJ, Tschöp MH, Woods SC, Morton GJ, Myers MG, D'Alessio D (2013) Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503:59–66. https://doi.org/10.1038/nature12709

Alonge KM, D'Alessio DA, Schwartz MW (2021) Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes. Diabetologia 64:5–14. https://doi.org/10.1007/s00125-020-05293-3

Myers MG Jr, Affinati AH, Richardson N, Schwartz MW (2021) Central nervous system regulation of organismal energy and glucose homeostasis. Nat Metab 3:737–750. https://doi.org/10.1038/s42255-021-00408-5

Banks WA, Jaspan JB, Kastin AJ (1997) Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 18:1257–1262. https://doi.org/10.1016/s0196-9781(97)00198-8

Banks WA (2004) The source of cerebral insulin. Eur J Pharmacol 490:5–12. https://doi.org/10.1016/j.ejphar.2004.02.040

Rhea EM, Banks WA (2021) A historical perspective on the interactions of insulin at the blood-brain barrier. J Neuroendocrinol 33:e12929. https://doi.org/10.1111/jne.12929

Kumar MP, Cremer AL, Klemm P, Steuernagel L, Sundaram S, Jais A, Hausen AC, Tao J, Secher A, Pedersen TÅ, Schwaninger M, Wunderlich FT, Lowell BB, Backes H, Brüning JC (2021) Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat Metab 3:1662–1679. https://doi.org/10.1038/s42255-021-00499-0

Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Allen AM, Mendelsohn FA (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121:1562–1570. https://doi.org/10.1210/endo-121-4-1562

Unger JW, Betz M (1998) Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications. Histol Histopathol 13:1215–1224. https://doi.org/10.14670/HH-13.1215

Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24:855–872. https://doi.org/10.1016/s0149-7634(00)00040-3

Cai W, Zhang X, Batista TM, García-Martín R, Softic S, Wang G, Ramirez AK, Konishi M, O'Neill BT, Kim JH, Kim JK, Kahn CR (2021) Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes 70:1857–1873. https://doi.org/10.2337/db20-1119

Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125. https://doi.org/10.1126/science.289.5487.2122

Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382. https://doi.org/10.1038/nm1202-798

Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L (2005) Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309:943–947. https://doi.org/10.1126/science.1112085

Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, Cho YR, Chuang JC, Xu Y, Choi M, Lauzon D, Lee CE, Coppari R, Richardson JA, Zigman JM, Chua S, Scherer PE, Lowell BB, Brüning JC, Elmquist JK (2010) Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab 11:286–297. https://doi.org/10.1016/j.cmet.2010.03.002

Wallum BJ, Taborsky GJ Jr, Porte D Jr, Figlewicz DP, Jacobson L, Beard JC, Ward WK, Dorsa D (1987) Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab 64:190–194. https://doi.org/10.1210/jcem-64-1-190

Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW (2000) Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes 49:1525–1533. https://doi.org/10.2337/diabetes.49.9.1525

Kern W, Benedict C, Schultes B, Plohr F, Moser A, Born J, Fehm HL, Hallschmid M (2006) Low cerebrospinal fluid insulin levels in obese humans. Diabetologia 49:2790–2792. https://doi.org/10.1007/s00125-006-0409-y

Heni M, Schöpfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, Häring HU, Maetzler W, Hennige AM (2014) Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans. Acta Diabetol 51:679–681. https://doi.org/10.1007/s00592-013-0546-y

Romanova IV, Derkach KV, Mikhrina AL, Sukhov IB, Mikhailova EV, Shpakov AO (2018) The leptin, dopamine and serotonin receptors in hypothalamic POMC-neurons in normal and obese rodents. Neurochem Res 43:821–837. https://doi.org/10.1007/s11064-018-2485-z

Papazoglou I, Berthou F, Vicaire N, Rouch C, Markaki EM, Bailbe D, Portha B, Taouis M, Gerozissis K (2012) Hypothalamic serotonin-insulin signaling cross-talk and alterations in a type 2 diabetic model. Mol Cell Endocrinol 350:136–144. https://doi.org/10.1016/j.mce.2011.12.007

Yang Y, Ma D, Wang Y, Jiang T, Hu S, Zhang M, Yu X, Gong CX (2013) Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimers Dis 33:329-338. https://doi.org/10.3233/JAD-2012-121294

Derkach KV, Perminova AA, Buzanakov DM, Shpakov AO (2019) Intranasal Administration of Proinsulin C-Peptide Enhances the Stimulating Effect of Insulin on Insulin System Activity in the Hypothalamus of Diabetic Rats. Bull Exp Biol Med 167:351–355. https://doi.org/10.1007/s10517-019-04525-w

He Y, Zhang C, Luo Y, Chen J, Yang M, Li L, Gu HF, Yang G, Zhang X (2021) Hypothalamic BMP9 suppresses glucose production by central PI3K/Akt/mTOR pathway. J Endocrinol 248:221–235. https://doi.org/10.1530/JOE-19-0591

Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516. https://doi.org/10.1038/nn849

Derkach KV, Bogush IV, Berstein LM, Shpakov AO (2015) The Influence of Intranasal Insulin on Hypothalamic-Pituitary-Thyroid Axis in Normal and Diabetic Rats. Horm Metab Res 47:916–924. https://doi.org/10.1055/s-0035-1547236

Derkach KV, Bondareva VM, Perminova AA, Shpakov AO (2019) C-peptide and insulin during combined intranasal administration improve the metabolic parameters and activity of the adenylate cyclase system in the hypothalamus, myocardium, and epididymal fat of rats with type 2 diabetes. Cell and Tissue Biology 13:228–236. https://doi.org/10.1134/S1990519X19030039

Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF (2015) Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes 64:766–774. https://doi.org/10.2337/db14-0685

Xiao C, Dash S, Stahel P, Lewis GF (2018) Effects of intranasal insulin on endogenous glucose production in insulin-resistant men. Diabetes Obes Metab 20:1751–1754. https://doi.org/10.1111/dom.13289

Mastrototaro L, Roden M (2021) Insulin resistance and insulin sensitizing agents. Metabolism 125:154892. https://doi.org/10.1016/j.metabol.2021.154892

Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A (2021) Natural Insulin Sensitizers for the Management of Diabetes Mellitus: A Review of Possible Molecular Mechanisms. Adv Exp Med Biol 1328:401–410. https://doi.org/10.1007/978-3-030-73234-9_26

Sukhov IB, Lebedeva MF, Zakharova IO, Derkach KV, Bayunova LV, Zorina II, Avrova NF, Shpakov AO (2020) Intranasal Administration of Insulin and Gangliosides Improves Spatial Memory in Rats with Neonatal Type 2 Diabetes Mellitus. Bull Exp Biol Med 168:317–320. https://doi.org/10.1007/s10517-020-04699-8

Schnaar RL (2016) Gangliosides of the Vertebrate Nervous System. J Mol Biol 428:3325–3336. https://doi.org/10.1016/j.jmb.2016.05.020

Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V (2020) Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 14:572965. https://doi.org/10.3389/fnins.2020.572965

Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S (2019) Gangliosides: Treatment Avenues in Neurodegenerative Disease. Front Neurol 10:859. https://doi.org/10.3389/fneur.2019.00859

Inamori KI, Inokuchi JI (2020) Roles of Gangliosides in Hypothalamic Control of Energy Balance: New Insights. Int J Mol Sci 21:5349. https://doi.org/10.3390/ijms21155349

Zakharova IO, Avrova NF (2001) The effect of cold stress on ganglioside fatty acid composition and ganglioside-bound sialic acid content of rat brain subcellular fractions. J Therm Biol 26:215–222. https://doi.org/10.1016/s0306-4565(00)00045-0

Vanier MT, Holm M, Ohman R, Svennerholm L (1971) Developmental profiles of gangliosides in human and rat brain. J Neurochem 18:581–592. https://doi.org/10.1111/j.1471-4159.1971.tb11988.x

Derkach KV, Bondareva VM, Chistyakova OV, Berstein LM, Shpakov AO (2015) The Effect of Long-Term Intranasal Serotonin Treatment on Metabolic Parameters and Hormonal Signaling in Rats with High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes. Int J Endocrinol 2015:245459. https://doi.org/10.1155/2015/245459

Lovestone S, Davis DR, Webster MT, Kaech S, Brion JP, Matus A, Anderton BH (1999) Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 45:995–1003. https://doi.org/10.1016/s0006-3223(98)00183-8

Noori T, Dehpour AR, Sureda A, Fakhri S, Sobarzo-Sanchez E, Farzaei MH, Küpeli Akkol E, Khodarahmi Z, Hosseini SZ, Alavi SD, Shirooie S (2020) The role of glycogen synthase kinase 3 beta in multiple sclerosis. Biomed Pharmacother 132:110874. https://doi.org/10.1016/j.biopha.2020.110874

Smith MA, Katsouri L, Irvine EE, Hankir MK, Pedroni SM, Voshol PJ, Gordon MW, Choudhury AI, Woods A, Vidal-Puig A, Carling D, Withers DJ (2015) Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice. Cell Rep 11:335–343. https://doi.org/10.1016/j.celrep.2015.03.029

Brown JM, Bentsen MA, Rausch DM, Phan BA, Wieck D, Wasanwala H, Matsen ME, Acharya N, Richardson NE, Zhao X, Zhai P, Secher A, Morton GJ, Pers TH, Schwartz MW, Scarlett JM (2021) Role of hypothalamic MAPK/ERK signaling and central action of FGF1 in diabetes remission. iScience 24:102944. https://doi.org/10.1016/j.isci.2021.102944

Shimizu H, Inoue K, Mori M (2007) The leptin-dependent and -independent melanocortin signaling system: regulation of feeding and energy expenditure. J Endocrinol 193:1–9. https://doi.org/10.1677/JOE-06-0144

Shpakov AO, Derkach KV, Berstein LM (2015) Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 1:FSO25. https://doi.org/10.4155/fso.15.23

Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ (2021) Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab 321:E156–E163. https://doi.org/10.1152/ajpendo.00642.2020

Tavares G, Marques D, Barra C, Rosendo-Silva D, Costa A, Rodrigues T, Gasparini P, Melo BF, Sacramento JF, Seiça R, Conde SV, Matafome P (2021) Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Mol Metab 51:101241. https://doi.org/10.1016/j.molmet.2021.101241

Morton GJ, Schwartz MW (2011) Leptin and the central nervous system control of glucose metabolism. Physiol Rev 91:389–411. https://doi.org/10.1152/physrev.00007.2010

Coppari R, Bjørbæk C (2012) Leptin revisited: its mechanism of action and potential for treating diabetes. Nat Rev Drug Discov 11:692–708. https://doi.org/10.1038/nrd3757

Fujikawa T (2021) Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol 33:e12941. https://doi.org/10.1111/jne.12941

German JP, Thaler JP, Wisse BE, Oh-I S, Sarruf DA, Matsen ME, Fischer JD, Taborsky GJ Jr, Schwartz MW, Morton GJ (2011) Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 152:394–404. https://doi.org/10.1210/en.2010-0890

Li X, Wu X, Camacho R, Schwartz GJ, LeRoith D (2011) Intracerebroventricular leptin infusion improves glucose homeostasis in lean type 2 diabetic MKR mice via hepatic vagal and non-vagal mechanisms. PLoS One 6:e17058. https://doi.org/10.1371/journal.pone.0017058

Fan S, Xu Y, Lu Y, Jiang Z, Li H, Morrill JC, Cai J, Wu Q, Xu Y, Xue M, Arenkiel BR, Huang C, Tong Q (2021) A neural basis for brain leptin action on reducing type 1 diabetic hyperglycemia. Nat Commun 12:2662. https://doi.org/10.1038/s41467-021-22940-4

Tanida M, Yamamoto N, Morgan DA, Kurata Y, Shibamoto T, Rahmouni K (2015) Leptin receptor signaling in the hypothalamus regulates hepatic autonomic nerve activity via phosphatidylinositol 3-kinase and AMP-activated protein kinase. J Neurosci 35:474–484. https://doi.org/10.1523/JNEUROSCI.1828-14.2015

Varela L, Horvath TL (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep 13:1079–1086. https://doi.org/10.1038/embor.2012.174

Huang Y, He Z, Gao Y, Lieu L, Yao T, Sun J, Liu T, Javadi C, Box M, Afrin S, Guo H, Williams KW (2018) Phosphoinositide 3-Kinase Is Integral for the Acute Activity of Leptin and Insulin in Male Arcuate NPY/AgRP Neurons. J Endocr Soc 2:518–532. https://doi.org/10.1210/js.2018-00061

Zhang ZY, Dodd GT, Tiganis T (2015) Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling. Trends Pharmacol Sci 36:661–674. https://doi.org/10.1016/j.tips.2015.07.003

Ono H (2019) Molecular Mechanisms of Hypothalamic Insulin Resistance. Int J Mol Sci 20:1317. https://doi.org/10.3390/ijms20061317

Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 14:e0213779. https://doi.org/10.1371/journal.pone.0213779

Vasandani C, Clark GO, Adams-Huet B, Quittner C, Garg A (2017) Efficacy and Safety of Metreleptin Therapy in Patients With Type 1 Diabetes: A Pilot Study. Diabetes Care 40:694–697. https://doi.org/10.2337/dc16-1553

Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699. https://doi.org/10.1038/nrm2977

Komura N, Suzuki KG, Ando H, Konishi M, Koikeda M, Imamura A, Chadda R, Fujiwara TK, Tsuboi H, Sheng R, Cho W, Furukawa K, Furukawa K, Yamauchi Y, Ishida H, Kusumi A, Kiso M (2016) Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat Chem Biol 12:402–410. https://doi.org/10.1038/nchembio.2059

Avrova NF, Victorov IV, Tyurin VA, Zakharova IO, Sokolova TV, Andreeva NA, Stelmaschuk EV, Tyurina YY, Gonchar VS (1998) Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochem Res 23:945–952. https://doi.org/10.1023/a:1021076220411

Sokolova TV, Zakharova IO, Furaev VV, Rychkova MP, Avrova NF (2007) Neuroprotective effect of ganglioside GM1 on the cytotoxic action of hydrogen peroxide and amyloid beta-peptide in PC12 cells. Neurochem Res 32:1302–1313. https://doi.org/10.1007/s11064-007-9304-2

Schneider JS, Gollomp SM, Sendek S, Colcher A, Cambi F, Du W (2013) A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J Neurol Sci 324:140–148. https://doi.org/10.1016/j.jns.2012.10.024

Zakharova IO, Sokolova TV, Vlasova YA, Furaev VV, Rychkova MP, Avrova NF (2014) GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity. Neurochem Res 39:2262–2275. https://doi.org/10.1007/s11064-014-1428-6

Fazzari M, Lunghi G, Chiricozzi E, Mauri L, Sonnino S (2022) Gangliosides and the Treatment of Neurodegenerative Diseases: A Long Italian Tradition. Biomedicines 10:363. https://doi.org/10.3390/biomedicines10020363

Wang X, Li B, Yu X, Zhou Y, Gao Y (2022) The Neuroprotective Effect of GM-1 Ganglioside on the Amyloid-Beta-Induced Oxidative Stress in PC-12 Cells Mediated by Nrf-2/ARE Signaling Pathway. Neurochem Res 47:2405–2415. https://doi.org/10.1007/s11064-022-03635-8

Galleguillos D, Wang Q, Steinberg N, Zaidi A, Shrivastava G, Dhami K, Daskhan GC, Schmidt EN, Dworsky-Fried Z, Giuliani F, Churchward M, Power C, Todd K, Taylor A, Macauley MS, Sipione S (2022) Anti-inflammatory role of GM1 and other gangliosides on microglia. J Neuroinflammation 19:9. https://doi.org/10.1186/s12974-021-02374-x

Itokazu Y, Fuchigami T, Morgan JC, Yu RK (2021) Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther 29:3059–3071. https://doi.org/10.1016/j.ymthe.2021.06.005

Knutson VP (1991) Cellular trafficking and processing of the insulin receptor. FASEB J 5:2130–2138. https://doi.org/10.1096/fasebj.5.8.2022311

Chen Y, Huang L, Qi X, Chen C (2019) Insulin Receptor Trafficking: Consequences for Insulin Sensitivity and Diabetes. Int J Mol Sci 20:5007. https://doi.org/10.3390/ijms20205007

Al-Qassab H, Smith MA, Irvine EE, Guillermet-Guibert J, Claret M, Choudhury AI, Selman C, Piipari K, Clements M, Lingard S, Chandarana K, Bell JD, Barsh GS, Smith AJ, Batterham RL, Ashford ML, Vanhaesebroeck B, Withers DJ (2009) Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab 10:343–354. https://doi.org/10.1016/j.cmet.2009.09.008

Benzler M, Benzler J, Stoehr S, Hempp C, Rizwan MZ, Heyward P, Tups A (2019) "Insulin-like" effects of palmitate compromise insulin signalling in hypothalamic neurons. J Comp Physiol B 189:413–424. https://doi.org/d10.1007/s00360-019-01220-0

García-Cáceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P, Ninkovic J, Yi CX, Le Thuc O, Szigeti-Buck K, Cai W, Meyer CW, Pfluger PT, Fernandez AM, Luquet S, Woods SC, Torres-Alemán I, Kahn CR, Götz M, Horvath TL, Tschöp MH (2016) Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell 166:867–880. https://doi.org/10.1016/j.cell.2016.07.028

Avila J, Wandosell F, Hernández F (2010) Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Rev Neurother 10:703–710. https://doi.org/10.1586/ern.10.40

Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, García-García L, Gómez-Oliver F, Ruiz-Albusac JM, Ávila J, Pozo MÁ (2022) Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Front Endocrinol 13:873301. https://doi.org/10.3389/fendo.2022.873301

Zakharova I O, Bayunova LV, Derkach K V, Ilyasov I O, Shpakov AO, Avrova N F (2022) Effects of intranasally administered insulin and gangliosides on metabolic parameters and activity of the hepatic insulin system in rats with type 2 Diabetes Mellitus. J Evol Biochem Physiol 58: 380–394. https://doi.org/10.1134/S0022093022020077

Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S, Yonezawa K (2006) Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 25:6361–632. https://doi.org/10.1038/sj.onc.1209882

Ono H, Pocai A, Wang Y, Sakoda H, Asano T, Backer JM, Schwartz GJ, Rossetti L (2008) Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J Clin Invest 118:2959–2968. https://doi.org/10.1172/JCI34277

Blouet C, Ono H, Schwartz GJ (2008) Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab 8:459–467. https://doi.org/10.1016/j.cmet.2008.10.004

Asaki C, Usuda N, Nakazawa A, Kametani K, Suzuki T (2003) Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain. Brain Res 972:168–176. https://doi.org/10.1016/s0006-8993(03)02523-x

Magnuson B, Ekim B, Fingar DC (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441:1–21. https://doi.org/10.1042/BJ20110892

Cota D, Matter EK, Woods SC, Seeley RJ (2008) The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci 28:7202-7208. https://doi.org/10.1523/JNEUROSCI.1389-08.2008

Um SH, D'Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402. https://doi.org/10.1016/j.cmet.2006.05.003

Tolomeo D, Micotti E, Serra SC, Chappell M, Snellman A, Forloni G (2018) Chemical exchange saturation transfer MRI shows low cerebral 2-deoxy-D-glucose uptake in a model of Alzheimer's Disease. Sci Rep 8:9576. https://doi.org/10.1038/s41598-018-27839-7

Ruud J, Steculorum SM, Brüning JC (2017) Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat Commun 8:15259. https://doi.org/10.1038/ncomms15259

Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P (2018) Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 1411:21–35. https://doi.org/10.1111/nyas.13435

Leal G, Comprido D, Duarte CB (2014) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76 (Pt C):639–656. https://doi.org/10.1016/j.neuropharm.2013.04.005