БИОЭЛЕКТРИЧЕСКИЙ ИМПЕДАНС МИОКАРДА ЛЕВОГО ЖЕЛУДОЧКА И ЛЕГКОГО КРЫС ПОСЛЕ ТРЕНИРОВОК ПРИНУДИТЕЛЬНЫМ ПЛАВАНИЕМ И ПОСЛЕДУЮЩИМ ДЕТРЕНИНГОМ
PDF

Ключевые слова

плавание
принудительные тренировки
детренинг
биоимпеданс легочной и миокардиальной ткани

Аннотация

Многочастотные биоимпедансные исследования проведены у крыс, подвергнутых восьминедельному курсу плавания и последующему восьминедельному периоду отсутствия физических нагрузок, и у контрольных животных.

Выявлено значимо меньшее отношение фазовых углов биоэлектрического импеданса легочной ткани при двух частотах электрического тока у крыс после длительных физических нагрузок в сравнение с контрольными животными, которое может свидетельствовать о структурно-функциональных изменениях легочной ткани. Не обнаружено значимых различий биоимпеданса миокарда левого желудочка сердца у крыс двух групп после восьми недель плавания.

После восьминедельного периода отсутствия физических нагрузок наблюдали у детренированных грызунов в сравнении с контрольными значимо меньшее активное сопротивление биоэлектрического импеданса миокардиальной ткани и значимо большее отношение сопротивлений биоэлектрического импеданса легочной ткани при двух частотах электрического тока, которые могут указывать на отеки, а также сохранение образовавшихся при физической нагрузке новых микрососудов.

https://doi.org/10.31857/S0044452923010059
PDF

Литература

Martínez V, Sanz-de la Garza M, Domenech-Ximenos B, Fernández C, García-Alvarez A, Prat-González S, Yanguas C, Sitges M (2021) Cardiac and Pulmonary Vascular Remodeling in Endurance Open Water Swimmers Assessed by Cardiac Magnetic Resonance: Impact of Sex and Sport Discipline. Front Cardiovascul Med 8. https://doi.org/10.3389/fcvm.2021.719113

Armour J, Donnelly PM, Bye PT (1993) The large lungs of elite swimmers: an increased alveolar number? Eur Respir J 6(2): 237–247.

Walther G, Nottin S, Karpoff L, Pérez-Martin A, Dauzat M, Obert P (2008) Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: comparison of the upper and lower limb vasculature. Acta Physiol (Oxf) 193(2): 139–150. https://doi.org/10.1111/j.1748-1716.2008.01834.x.

Mujika I, Padilla S (2000) Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Med 30(2): 79–87. https://doi.org/10.2165/00007256-200030020-00002.

Lukaski H, Raymond-Pope CJ (2021) New Frontiers of Body Composition in Sport. Int J Sports Med 42(7): 588–601. https://doi.org/10.1055/a-1373-5881.

Francisco R, Matias CN, Santos DA, Campa F, Minderico CS, Rocha P, Heymsfield SB, Lukaski H, Sardinha LB, Silva AM. (2020) The Predictive Role of Raw Bioelectrical Impedance Parameters in Water Compartments and Fluid Distribution Assessed by Dilution Techniques in Athletes. Int J Environ Res Public Health. 17(3): 759. https://doi.org/10.3390/ijerph17030759.

Campa F, Bongiovanni T, Trecroci A, Rossi A, Greco G, Pasta G, Coratella G (2021) Effects of the COVID-19 Lockdown on Body Composition and Bioelectrical Phase Angle in Serie A Soccer Players: A Comparison of Two Consecutive Seasons. Biology (Basel) 10(11): 1175. https://doi.org/10.3390/biology10111175.

Sel K, Osman D, Jafari R (2021) Non-Invasive Cardiac and Respiratory Activity Assessment From Various Human Body Locations Using Bioimpedance. IEEE Open J Eng Med Biol 2: 210–217. https://doi.org/10.1109/ojemb.2021.3085482.

Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J (2021) Animal exercise studies in cardiovascular research: Current knowledge and optimal design - A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors’ Association. J Sport Health Sci 10(6): 660–674. https://doi.org/10.1016/j.jshs.2021.08.002.

Wang Y, Wisloff U, Kemi OJ (2010) Animal models in the study of exercise-induced cardiac hypertrophy. Physiol Res 59(5): 633–644. https://doi.org/10.33549/physiolres.931928.

Oláh A, Kellermayer D, Mátyás C, Németh BT, Lux Á, Szabó L, Török M, Ruppert M, Meltzer A, Sayour AA, Benke K, Hartyánszky I, Merkely B, Radovits T (2017) Complete Reversion of Cardiac Functional Adaptation Induced by Exercise Training. Med Sci Sports Exerc 49(3): 420–429. https://doi.org/10.1249/MSS.0000000000001127.

Ramasamy S, Velmurugan G, Shanmugha Rajan K, Ramprasath T, Kalpana K (2015) MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts. PLoS One 10(3): e0121401. https://doi.org/10.1371/journal.pone.0121401.

Balakumar P, Singh M (2006) The possible role of caspase-3 in pathological and physiological cardiac hypertrophy in rats. Basic Clin. Pharmacol. Toxicol 99: 418–424. https://doi.org/10.1111/j.1742-7843.2006.pto_569.x.

Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol 37(1): 7–11. https://doi.org/10.1016/0002-9149(76)90491-4.

Watson LE, Sheth M, Denyer RF, Dostal DE. (2004) Baseline echocardiographic values for adult male rats. J Am Soc Echocardiogr 17(2):161–167. https://doi.org/10.1016/j.echo.2003.10.010.

Hu L, Maslanik T, Zerebeckyj M, Plato CF (2012) Evaluation of bioimpedance spectroscopy for the measurement of body fluid compartment volumes in rats. J Pharmacolog Toxicol Meth 65: 75–82. https://doi.org/10.1016/j.vascn.2012.02.001

Raghavan K, Porterfield JE, Kottam ATG, Feldman MD, Escobedo D, Valvano JW, Pearce JA (2009) Electrical conductivity and permittivity of murine myocardium. IEEE Transaction Biomed Enginer 56(8): 2044–2052. https://doi.org/10.1109/TBME.2009.2012401

Cebrián-Ponce Á, Irurtia A, Carrasco-Marginet M, Saco-Ledo G, Girabent-Farrés M, Castizo-Olier J (2021) Electrical Impedance Myography in Health and Physical Exercise: A Systematic Review and Future Perspectives. Front Physiol 12:740877. https://doi.org/10.3389/fphys.2021.740877.

Торнуев ЮВ, Непомнящих ДЛ, Никитюк ДБ, Лапий ГА, Молодых ОП, Непомнящих РД, Колдышева ЕВ, Криницына ЮМ, Балахнин СМ, Манвелидзе РА, Семенов ДЕ, Чурин БВ (2014) Диагностические возможности неинвазивной биоимпедансометрии. Фунд исслед (10-4): 782–788. [Tornuev YuV, Nepomnyashchikh DL, Nikityuk DB, Lapii GA, Molodykh OP, Nepomnyashchikh RD, Koldysheva EV, Krinitsyna YuM, Balakhnin SM, Manvelidze RA, Semenov DE, Churin BV (2014) Diagnostic capability of noninvasive bioimpedance. Fundamental Res (10): 782–788. (In Russ)].

Торнуев ЮВ, Балахнин СМ, Преображенская ВК, Манвелидзе РА, Ивлева ЕК (2016) Биоимпедансометрия миокарда при очаговых и диффузных повреждениях различного генеза. Совр пробл науки образ 4. [Tornuev YuV, Balakhnin SM, Preobrazhenskaya VK, Manvelidze RA, Ivleva EK Bioimpedance measuring myocardium in focal and diffuse injuries of various genesis. Modern Probl Sci Ed 4. (In Russ)]. https://doi.org/ 10.17513/spno.25001

Dittmar M (2003) Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol 122(4): 361–370. https://doi.org/10.1002/ajpa.10301

Николаев ДВ, Смирнов АВ, Бобринская ИГ, Руднев СГ (2009) Биоимпедансный анализ состава человека. М.: Наука. 392 с. [Nikolaev DV, Smirnov AV, Bobrinskaya IG, Rudnev SG (2009) Bioelectric impedance analysis of human body composition. M.: Nauka 392 p. (In Russ)].

Rutkove SB, Shefner JM, Gregas M, Butler H, Caracciolo J, Lin C, Fogerson PM, Mongiovi P, Darras BT. (2010) Characterizing spinal muscular atrophy with electrical impedance myography. Muscle Nerve. 42(6):915–921. https://doi.org/10.1002/mus.21784.

Kun S, Ristic B,. Peura RA, Dunn RM (1999) Real-time extraction of tissue impedance model parameters for electrical impedance spectrometer. Med Biol Eng Comput 37(4): 428–432. https://doi.org/10.1007/BF02513325

Cornish BH, Thomas BJ, Ward LC (1993) Improved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis. Phys Med Biol 38(3): 337–346. https://doi.org/10.1088/0031-9155/38/3/001.

Rutter K, Hennoste L, Ward LC, Cornish BH, Thomas BJ (1998) Bioelectrical impedance analysis for the estimation of body composition in rats. Lab Anim 32(1):65–71. https://doi.org/10.1258/002367798780559356

Tsigos C, Stefanaki C, Lambrou GI, Boschiero D, Chrousos GP (2015) Stress and inflammatory biomarkers and symptoms are associated with bioimpedance measures. Eur J Clin Invest 45(2): 126–134. https://doi.org/10.1111/eci.12388

Campa F, Thomas DM, Watts K, Clark N, Baller D, Morin T, Toselli S, Koury JC, Melchiorri G, Andreoli A, Mascherini G, Petri C, Sardinha LB, Silva AM (2022) Reference Percentiles for Bioelectrical Phase Angle in Athletes. Biology (Basel) 11(2):264. doi: 10.3390/biology11020264.

Tatchum-Talom R, Schulz R, McNeill JR, Khadour FH (2000) Upregulation of neuronal nitric oxide synthase in skeletal muscle by swim training. Am J Physiol Heart Circ Physiol 279(4): H1757–1766. https://doi.org/10.1152/ajpheart.2000.

Schaible TF, Scheuer J (1981) Cardiac function in hypertrophied hearts from chronically exercised female rats. J Appl Physiol Respir Environ Exerc Physiol 50(6): 1140–1145. https://doi.org/10.1152/jappl.1981.50.6.1140

Penpargkul S, Scheuer J (1970) The effect of physical training upon the mechanical and metabolic performance of the rat heart. J Clin Invest 49(10): 1859–1868. https://doi.org/10.1172/JCI106404.

Radovits T, Oláh A, Lux Á, Németh BT, Hidi L, Birtalan E, Kellermayer D, Mátyás C, Szabó G, Merkely B (2013) Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis. Am J Physiol Heart Circ Physiol 305(1): H124–134. https://doi.org/10.1152/ajpheart.00108.2013.

D'Ascenzi F, Pelliccia A, Cameli M, Lisi M, Natali BM, Focardi M, Giorgi A, D'Urbano G, Causarano A, Bonifazi M, Mondillo S. (2015) Dynamic changes in left ventricular mass and in fat-free mass in top-level athletes during the competitive season. Eur J Prev Cardiol. 22(1):127–134. https://doi.org/10.1177/2047487313505820.

Hense HW, Gneiting B, Muscholl M, Broeckel U, Kuch B, Doering A, Riegger GA, Schunkert H. (1998) The associations of body size and body composition with left ventricular mass: impacts for indexation in adults. J Am Coll Cardiol. 32(2):451–457. https://doi.org/10.1016/s0735-1097(98)00240-x.

Raaijmakers E, Faes TJ, Kunst PW, Bakker J, Rommes JH, Goovaerts HG, Heethaar RM (1998) The influence of extravascular lung water on cardiac output measurements using thoracic impedance cardiography. Physiol Meas 19(4): 491–499. https://doi.org/10.1088/0967-3334/19/4/004.

Baghbani R, Moradi MH, Shadmehr MB (2019) Identification of Pulmonary Nodules by Sweeping the Surface of the Lung with an Electrical Bioimpedance Probe: A Feasibility Study. J Invest Surg 32(7):614–623. https://doi.org/10.1080/08941939.2018.1446106.

Nopp P, Rapp E, Pfutzner H, Nakesch H, Ruhsam C (1993) Dielectric properties of lung tissue as a function of air content. Phys Med Biol 38: 699–716. https://doi.org/10.1088/0031-9155/38/6/005

Kolomeets NL, Smirnova SL, Roshchevskaya IM (2016) The electrical resistance of the lungs, intercostal muscles, and kidneys in hypertensive ISIAH rats. Biophysics 61(3): 498–504. https://doi.org/10.1134/S0006350916030076

Зайцева МС, Иванов ДГ, Александровская НВ (2015) Работоспособность крыс в тесте "Вынужденное плавание с грузом" и причины ее вариабельности. Биомедицина (4): 30–42 [Zaytseva MS, Ivanov DG, Alexandrovskaya NV (2015) The rat work capacity in forced swimming test with load and causes it variability. Biomedicine (4): 30–42. (In Russ)].

Коломеец НЛ, Суслонова ОВ, Смирнова СЛ, Рощевская ИМ (2019) Биоэлектрический импеданс тела крыс при монокроталиновой модели легочной гипертензии. Биомедицина 15 (1): 95–101. [Kolomeyets NL, Suslonova OV, Smirnova SL, Roshchevskaya IM (2019) Bioelectrical impedance of the body in rats with monocrotaline-induced pulmonary hypertension. Biomedicine 15 (1): 95–101. (In Russ)]. https://doi.org/10.33647/2074-5982-15-1-95-101

Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88(3): 1009–1086. https://doi.org/10.1152/physrev.00045.2006.

Bei Y, Huang Z, Feng X, Li L, Wei M, Zhu Y, Liu S, Chen C, Yin M, Jiang H, Xiao J (2022) Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. J Sport Health Sci. 11(4):466–478. doi: 10.1016/j.jshs.2022.02.005.

Bocalini DS, Carvalho EV, de Sousa AF, Levy RF, Tucci PJ (2010) Exercise training-induced enhancement in myocardial mechanics is lost after 2 weeks of detraining in rats. Eur J Appl Physiol 109(5): 909–914. https://doi.org/10.1007/s00421-010-1406-x.

Marini M, Falcieri E, Margonato V, Treré D, Lapalombella R, di Tullio S, Marchionni C, Burattini S, Samaja M, Esposito F, Veicsteinas A (2008) Partial persistence of exercise-induced myocardial angiogenesis following 4-week detraining in the rat. Histochem Cell Biol 129: 479–487. https://doi.org/10.1007/s00418-007-0373-8

Tsai J-Z, Cao H, Tungjitkusolmun S, Woo EJ, Vorperian VR, Webster JG (2000) Dependence of apparent resistance of four-electrode probes on insertion depth. IEEE Transact Biomed Engineer 47(1): 41–48. https://doi.org/10.1109/10.817618

Schwartzman D, Chang I, Michele JJ, Mirotznik MS, Foster KR (1999) Electrical Impedance Properties of Normal and Chronically Infarcted Left Ventricular Myocardium. J Intervent Cardiac Electrophysiol 3: 213–224. https://doi.org/10.1023/a:1009887306055

Zhao TX, Brown BH, Nopp P, Wang W, Leathard AD, Lu LQ (1996) Modelling of cardiac-related changes in lung resistivity measured with EITS. Physiol Meas 17 (Suppl 4A): 227–234. https://doi.org/10.1088/0967-3334/17/4a/027.

Белик ДВ (2000) Импедансная электрохирургия. Новосибирск: Наука. 237 с. [Belik DV (2000) Impedance electrosurgery. Novosibirsk: Nauka 237 p. (In Russ)].

Yamada Y (2018) Muscle Mass, Quality, and Composition Changes During Atrophy and Sarcopenia. In: Xiao J (ed) Muscle Atrophy. Advances in Experimental Medicine and Biology. 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_3

Bartels EM, Sørensen ER, Harrison AP (2015) Multi-frequency bioimpedance in human muscle assessment. Physiol Rep. 3(4):e12354. https://doi.org/10.14814/phy2.12354.

Kilic-Erkek O, Kilic-Toprak E, Caliskan S, Ekbic Y, Akbudak IH, Kucukatay V, Bor-Kucukatay M. (2016) Detraining reverses exercise-induced improvement in blood pressure associated with decrements of oxidative stress in various tissues in spontaneously hypertensive rats. Mol Cell Biochem 412(1-2): 209–219. https://doi.org/10.1007/s11010-015-2627-4

Торнуев ЮВ, Хачатрян РГ, Хачатрян АП, Махнев ВП, Осенний АС (1990) Электрический импеданс биологических тканей. М.: Изд-во ВЗПИ. 155с. [Tornuev YuV, Hachatryan RG, Hachatryan АP, Mahnev VP, Osenniy АS (1990) Electrical impedance of biological tissues. Izdvо VZPI, Мoscow. 155 p. (In Russ)].