ОПТОПРОТЕЗИРОВАНИЕ БИПОЛЯРНЫХ КЛЕТОК СЕТЧАТКИ
PDF

Ключевые слова

сетчатка
оптогенетика
каналородопсин
родопсин
протезирование
биполярные клетки
нейродегенеративные заболевания

Аннотация

Опыт оптогенетического протезирования сетчатки на животных моделях насчитывает уже более 16 лет, а в последний год появились первые результаты, полученные на человеке. За этот срок стали понятны основные проблемы протезирования, и одновременно были предложены подходы к их решению. В настоящем обзоре мы ставим себе задачу представить достижения в области оптогенетического протезирования биполярных клеток, уделяя внимание в основном относительно недавним публикациям. В обзоре описаны преимущества и недостатки протезирования биполярных клеток по сравнению с альтернативной мишенью – ганглиозными клетками, а также проведен сравнительный анализ эффективности использования в качестве протезирующего инструмента ионотропных светочувствительных белков, каналородопсинов, или метаботропных рецепторов, родопсинов.

https://doi.org/10.31857/S0044452922060092
PDF

Литература

Mills JO, Jalil A, Stanga PE (2017) Electronic retinal implants and artificial vision: journey and present.Eye (Lond) 31(10): 1383-98. eye201765 [pii]; https://doi.org/10.1016/j.acthis.2019.151485 10.1038/eye.2017.65

Bloch E, Luo Y, da Cruz L (2019) Advances in retinal prosthesis systems.Therapeutic advances in ophthalmology 11: 2515841418817501. https://doi.org/10.1177/2515841418817501

Ahuja AK, Behrend MR (2013) The Argus™ II retinal prosthesis: factors affecting patient selection for implantation.Progress in retinal and eye research 36: 1-23. https://doi.org/10.1016/j.preteyeres.2013.01.002

Firsov M (2019) Perspectives for the Optogenetic Prosthetization of the Retina.Neuroscience and Behavioral Physiology 49: 192–8. https://doi.org/10.1007/s11055-019-00714-2

Kirpichnikov MP, Ostrovskiy MA (2015) [Optogenetics and prosthetic treatment of retinal degeneration].Vestn Oftalmol 131(3): 99-111. https://doi.org/10.17116/oftalma2015131399-111

Ostrovsky MA, Kirpichnikov MP (2019) Prospects of Optogenetic Prosthesis of the Degenerative Retina of the Eye.Biochemistry (Mosc ) 84(5): Biochemistry (Mosc). 2019 May;84(5):479-490. https://doi.org/10.1134/S0006297919050031.

Scholl HP, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, et al. (2016) Emerging therapies for inherited retinal degeneration.Sci Transl Med 8(368): 368rv6. 8/368/368rv6 [pii]; https://doi.org/10.1126/scitranslmed.aaf2838

Chaffiol A, Duebel J (2018) Mini-Review: Cell Type-Specific Optogenetic Vision Restoration Approaches.Advances in experimental medicine and biology 1074: 69-73. https://doi.org/10.1007/978-3-319-75402-4_9

Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, et al. (2020) Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss.Cells 9(4): https://doi.org/10.3390/cells9040931

Nishiguchi KM, Carvalho LS, Rizzi M, Powell K, Holthaus SM, Azam SA, et al. (2015) Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179.Nat Commun 6: Nat Commun. 2015 Jan 23;6:6006. https://doi.org/10.1038/ncomms7006.

A L, Zou T, He J, Chen X, Sun D, Fan X, et al. (2019) Rescue of Retinal Degeneration in rd1 Mice by Intravitreally Injected Metformin.Frontiers in molecular neuroscience 12: 102. https://doi.org/10.3389/fnmol.2019.00102

Dalke C, Löster J, Fuchs H, Gailus-Durner V, Soewarto D, Favor J, et al. (2004) Electroretinography as a screening method for mutations causing retinal dysfunction in mice.Investigative ophthalmology & visual science 45(2): 601-9. https://doi.org/10.1167/iovs.03-0561

Mace E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P, et al. (2015) Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice.Mol Ther 23(1): 7-16. S1525-0016(16)30005-3 [pii]; https://doi.org/10.1038/mt.2014.154

Lu Q, Ganjawala TH, Krstevski A, Abrams GW, Pan ZH (2020) Comparison of AAV-Mediated Optogenetic Vision Restoration between Retinal Ganglion Cell Expression and ON Bipolar Cell Targeting.Molecular therapy Methods & clinical development 18: 15-23. https://doi.org/10.1016/j.omtm.2020.05.009

Tu HY, Matsuyama T (2020) Multielectrode Array Recording of Mouse Retinas Transplanted with Stem Cell-Derived Retinal Sheets.Methods Mol Biol 2092: 207-20. https://doi.org/10.1007/978-1-0716-0175-4_15

Reinhard K, Tikidji-Hamburyan A, Seitter H, Idrees S, Mutter M, Benkner B, et al. (2014) Step-by-step instructions for retina recordings with perforated multi electrode arrays.PloS one 9(8): e106148. https://doi.org/10.1371/journal.pone.0106148

Planul A, Dalkara D (2017) Vectors and Gene Delivery to the Retina.Annu Rev Vis Sci 3: 121-40. https://doi.org/10.1146/annurev-vision-102016-061413

Juttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB, Hantz P, et al. (2019) Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans.Nat Neurosci 22(8): Nat Neurosci. 2019 Aug;22(8):1345-1356. https://doi.org/10.1038/s41593-019-0431-2. Epub 2019 Jul 8.

de Leeuw CN, Dyka FM, Boye SL, Laprise S, Zhou M, Chou AY, et al. (2014) Targeted CNS Delivery Using Human MiniPromoters and Demonstrated Compatibility with Adeno-Associated Viral Vectors.Molecular therapy Methods & clinical development 1: 5. https://doi.org/10.1038/mtm.2013.5

Korecki AJ, Cueva-Vargas JL, Fornes O, Agostinone J, Farkas RA, Hickmott JW, et al. (2021) Human MiniPromoters for ocular-rAAV expression in ON bipolar, cone, corneal, endothelial, Muller glial, and PAX6 cells.Gene Ther 28(6): 351-72. https://doi.org/10.1038/s41434-021-00227-z

Auricchio A, Kobinger G, Anand V, Hildinger M, O'Connor E, Maguire AM, et al. (2001) Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model.Hum Mol Genet 10(26): 3075-81. https://doi.org/10.1093/hmg/10.26.3075

Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M, et al. (2007) Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors.J Virol 81(20): 11372-80. https://doi.org/10.1128/JVI.01327-07

Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, et al. (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous.Sci Transl Med 5(189): 189ra76. 5/189/189ra76 [pii]; https://doi.org/10.1126/scitranslmed.3005708

Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ, Min SH, et al. (2011) Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina.Mol Ther 19(2): 293-301. https://doi.org/10.1038/mt.2010.234

Adijanto J, Naash MI (2015) Nanoparticle-based technologies for retinal gene therapy.Eur J Pharm Biopharm 95(Pt B): 353-67. S0939-6411(15)00003-X [pii]; https://doi.org/10.1016/j.ejpb.2014.12.028

Rotov AY, Romanov IS, Tarakanchikova YV, Astakhova LA. (2021) Application Prospects for Synthetic Nanoparticles in Optogenetic Retinal Prosthetics.Journal of Evolutionary Biochemistry and Physiology 57(6): 1333-50. https://doi.org/10.1134/S0022093021060132

Cardoso MM, Peça IN, Roque AC (2012) Antibody-conjugated nanoparticles for therapeutic applications.Current medicinal chemistry 19(19): 3103-27. https://doi.org/10.2174/092986712800784667

Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances.Advanced drug delivery reviews 65(1): 121-38. https://doi.org/10.1016/j.addr.2012.09.041

Batabyal S, Kim S, Wright W, Mohanty S (2021) Layer-specific nanophotonic delivery of therapeutic opsin-encoding genes into retina.Exp Eye Res 205: 108444. https://doi.org/10.1016/j.exer.2021.108444

Baker CK, Flannery JG (2018) Innovative Optogenetic Strategies for Vision Restoration.Front Cell Neurosci 12: 316. https://doi.org/10.3389/fncel.2018.00316

Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, et al. (2021) Partial recovery of visual function in a blind patient after optogenetic therapy.Nat Med 27(7): Nat Med. 2021 Jul;27(7):1223-1229. https://doi.org/10.1038/s41591-021-01351-4. Epub 2021 May 24.

Jones BW, Kondo M, Terasaki H, Lin Y, McCall M, Marc RE (2012) Retinal remodeling.Jpn J Ophthalmol 56(4): Jpn J Ophthalmol. 2012 Jul;56(4):289-306. https://doi.org/10.1007/s10384-012-0147-2. Epub 2012 May 30.

Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Marmor M, Marc RE (2016) Retinal remodeling in human retinitis pigmentosa.Exp Eye Res 150: 149-65. https://doi.org/10.1016/j.exer.2016.03.018

Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW, Wilson JH, et al. (2007) Neural reprogramming in retinal degeneration.Investigative ophthalmology & visual science 48(7): 3364-71. https://doi.org/10.1167/iovs.07-0032

Chua J, Fletcher EL, Kalloniatis M (2009) Functional remodeling of glutamate receptors by inner retinal neurons occurs from an early stage of retinal degeneration.J Comp Neurol 514(5): 473-91. https://doi.org/10.1002/cne.22029

Gilhooley MJ, Hickey DG, Lindner M, Palumaa T, Hughes S, Peirson SN, et al. (2021) ON-bipolar cell gene expression during retinal degeneration: Implications for optogenetic visual restoration.Exp Eye Res 207: Exp Eye Res. 2021 Jun;207:108553. https://doi.org/10.1016/j.exer.2021.108553. Epub 2021 Mar 31.

Margolis DJ, Detwiler PB (2011) Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa.J Ophthalmol 2011: J Ophthalmol. 2011;2011:507037. https://doi.org/10.1155/2011/507037. Epub 2010 Sep 29.

Trenholm S, Awatramani GB (2015) Origins of spontaneous activity in the degenerating retina.Front Cell Neurosci 9: Front Cell Neurosci. 2015 Jul 29;9:277. https://doi.org/10.3389/fncel.2015.00277. eCollection 2015.

Borowska J, Trenholm S, Awatramani GB (2011) An intrinsic neural oscillator in the degenerating mouse retina.J Neurosci 31(13): 5000-12. https://doi.org/10.1523/JNEUROSCI.5800-10.2011

Margolis DJ, Gartland AJ, Singer JH, Detwiler PB (2014) Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration.PloS one 9(1): e86253. https://doi.org/10.1371/journal.pone.0086253

Stasheff SF (2008) Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse.J Neurophysiol 99(3): 1408-21. https://doi.org/10.1152/jn.00144.2007

Eleftheriou CG, Cehajic-Kapetanovic J, Martial FP, Milosavljevic N, Bedford RA, Lucas RJ (2017) Meclofenamic acid improves the signal to noise ratio for visual responses produced by ectopic expression of human rod opsin.Mol Vis 23: 334-45.

Kolb H, Linberg KA, Fisher SK (1992) Neurons of the human retina: a Golgi study.J Comp Neurol 318(2): 147-87. https://doi.org/10.1002/cne.903180204

Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P (2021) Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance.Frontiers in neurology 12: 661938. https://doi.org/10.3389/fneur.2021.661938

Rotov AY, Nikolaeva DA, Astakhova LA, Firsov ML. (2020) Virus Vectors for Optogenetic Prosthetization of the Retina.Neuroscience and Behavioral Physiology 50(3): 358-66. https://doi.org/10.1007/s11055-020-00911-4

McClements ME, Staurenghi F, Visel M, Flannery JG, MacLaren RE, Cehajic-Kapetanovic J (2021) AAV Induced Expression of Human Rod and Cone Opsin in Bipolar Cells of a Mouse Model of Retinal Degeneration.BioMed research international 2021: 1-8. https://doi.org/10.1155/2021/4014797

Kim DS, Matsuda T, Cepko CL (2008) A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression.J Neurosci 28(31): 7748-64. https://doi.org/10.1523/JNEUROSCI.0397-08.2008

van WM, Hulliger EC, Girod L, Ebneter A, Kleinlogel S (2017) Present Molecular Limitations of ON-Bipolar Cell Targeted Gene Therapy.Front Neurosci 11: 161. https://doi.org/10.3389/fnins.2017.00161

Lu Q, Ganjawala TH, Ivanova E, Cheng JG, Troilo D, Pan ZH (2016) AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates.Gene Ther 23(8-9): 680-9. gt201642 [pii]; https://doi.org/10.1038/gt.2016.42

Hulliger EC, Hostettler SM, Kleinlogel S (2020) Empowering Retinal Gene Therapy with a Specific Promoter for Human Rod and Cone ON-Bipolar Cells.Mol Ther Methods Clin Dev 17: Mol Ther Methods Clin Dev. 2020 Mar 13;17:505-519. https://doi.org/10.1016/j.omtm.2020.03.003. eCollection 2020 Jun 12.

Gilhooley MJ, Lindner M, Palumaa T, Hughes S, Peirson SN, Hankins MW (2022) A systematic comparison of optogenetic approaches to visual restoration.Mol Ther Methods Clin Dev 25: Mol Ther Methods Clin Dev. 2022 Mar 7;25:111-123. https://doi.org/10.1016/j.omtm.2022.03.003. eCollection 2022 Jun 9.

Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA, et al. (2011) Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness.Mol Ther 19(7): Mol Ther. 2011 Jul;19(7):1220-9. https://doi.org/10.1038/mt.2011.69. Epub 2011 Apr 19.

Wright P, Rodgers J, Wynne J, Bishop PN, Lucas RJ, Milosavljevic N (2021) Viral Transduction of Human Rod Opsin or Channelrhodopsin Variants to Mouse ON Bipolar Cells Does Not Impact Retinal Anatomy or Cause Measurable Death in the Targeted Cells.Int J Mol Sci 22(23): Int J Mol Sci. 2021 Dec 3;22(23):13111. https://doi.org/10.3390/ijms222313111.

Chaffiol A, Caplette R, Jaillard C, Brazhnikova E, Desrosiers M, Dubus E, et al. (2017) A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina.Mol Ther 25(11): 2546-60. S1525-0016(17)30326-X [pii]; https://doi.org/10.1016/j.ymthe.2017.07.011

Euler T, Haverkamp S, Schubert T, Baden T (2014) Retinal bipolar cells: elementary building blocks of vision.Nat Rev Neurosci 15(8): Nat Rev Neurosci. 2014 Aug;15(8):507-19. https://doi.org/10.1038/nrn3783.

van WM, Pielecka-Fortuna J, Lowel S, Kleinlogel S (2015) Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool.PLoS Biol 13(5): e1002143. PBIOLOGY-D-14-03077 [pii]; https://doi.org/10.1371/journal.pbio.1002143

Schilardi G, Kleinlogel S (2021) Two Functional Classes of Rod Bipolar Cells in the Healthy and Degenerated Optogenetically Treated Murine Retina.Front Cell Neurosci 15: Front Cell Neurosci. 2022 Jan 13;15:809531. https://doi.org/10.3389/fncel.2021.809531. eCollection 2021.

Khabou H, Garita-Hernandez M, Chaffiol A, Reichman S, Jaillard C, Brazhnikova E, et al. (2018) Noninvasive gene delivery to foveal cones for vision restoration.JCI Insight 3(2): 96029 [pii]; https://doi.org/10.1172/jci.insight.96029

Simunovic MP, Shen W, Lin JY, Protti DA, Lisowski L, Gillies MC (2019) Optogenetic approaches to vision restoration.Exp Eye Res 178: 15-26. https://doi.org/10.1016/j.exer.2018.09.003

Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, et al. (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration.Neuron 50(1): Neuron. 2006 Apr 6;50(1):23-33. https://doi.org/10.1016/j.neuron.2006.02.026.

Lindner M, Gilhooley MJ, Peirson SN, Hughes S, Hankins MW (2021) The functional characteristics of optogenetic gene therapy for vision restoration.Cell Mol Life Sci 78(4): Cell Mol Life Sci. 2021;78(4):1597-613. Epub 2020 Jul 29; https://doi.org/10.1007/s00018-020-03597-6.

Martemyanov KA, Sampath AP (2017) The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease.Annual review of vision science 3: 25-51. https://doi.org/10.1146/annurev-vision-102016-061338

Gaub BM, Berry MH, Holt AE, Isacoff EY, Flannery JG (2015) Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity.Mol Ther 23(10): 1562-71. S1525-0016(16)30287-8 [pii]; https://doi.org/10.1038/mt.2015.121

Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, Milosavljevic N, Pienaar A, Bedford R, et al. (2015) Restoration of Vision with Ectopic Expression of Human Rod Opsin.Curr Biol 25(16): Curr Biol. 2015 Aug 17;25(16):2111-22. https://doi.org/10.1016/j.cub.2015.07.029. Epub 2015 Jul 30.

Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin.Proceedings of the National Academy of Sciences of the United States of America 105(41): 16009-14. https://doi.org/10.1073/pnas.0806114105

De Silva SR, Barnard AR, Hughes S, Tam SKE, Martin C, Singh MS, et al. (2017) Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy.Proceedings of the National Academy of Sciences of the United States of America 114(42): 11211-6. https://doi.org/10.1073/pnas.1701589114

Ballister ER, Rodgers J, Martial F, Lucas RJ (2018) A live cell assay of GPCR coupling allows identification of optogenetic tools for controlling Go and Gi signaling.BMC biology 16(1): https://doi.org/10. 10.1186/s12915-017-0475-2

Thyagarajan S, van Wyk M, Lehmann K, Löwel S, Feng G, Wässle H (2010) Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells.J Neurosci 30(26): 8745-58. https://doi.org/10.1523/jneurosci.4417-09.2010

Tomita H, Sugano E, Isago H, Hiroi T, Wang Z, Ohta E, et al. (2010) Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats.Exp Eye Res 90(3): 429-36. https://doi.org/10.1016/j.exer.2009.12.006

Sengupta A, Chaffiol A, Mace E, Caplette R, Desrosiers M, Lampic M, et al. (2016) Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina.EMBO Mol Med 8(11): 1248-64. emmm.201505699 [pii]; https://doi.org/10.15252/emmm.201505699

Berry MH, Holt A, Salari A, Veit J, Visel M, Levitz J, et al. (2019) Restoration of high-sensitivity and adapting vision with a cone opsin.Nat Commun 10(1): Nat Commun. 2019 Mar 15;10(1):1221. https://doi.org/10.1038/s41467-019-09124-x.

Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, et al. (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.Nature neuroscience 11(6): 667-75. https://doi.org/10.1038/nn.2117

Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacso AE, et al. (2014) Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter.EMBO Mol Med 6(9): 1175-90. emmm.201404077 [pii]; https://doi.org/10.15252/emmm.201404077

Ameline B, Tshilenge KT, Weber M, Biget M, Libeau L, Caplette R, et al. (2017) Long-term expression of melanopsin and channelrhodopsin causes no gross alterations in the dystrophic dog retina.Gene Ther 24(11): 735-41. gt201763 [pii]; https://doi.org/10.1038/gt.2017.63

Beltran WA (2009) The use of canine models of inherited retinal degeneration to test novel therapeutic approaches.Veterinary ophthalmology 12(3): 192-204. https://doi.org/10.1111/j.1463-5224.2009.00694.x

Chaffiol A, Provansal M, Joffrois C, Blaize K, Labernede G, Goulet R, et al. (2022) In vivo optogenetic stimulation of the primate retina activates the visual cortex after long-term transduction.Molecular therapy Methods & clinical development 24: 1-10. https://doi.org/10.1016/j.omtm.2021.11.009

Winkler PA, Occelli LM, Petersen-Jones SM (2020) Large Animal Models of Inherited Retinal Degenerations: A Review.Cells 9(4): https://doi.org/10.3390/cells9040882

Ganjawala TH, Lu Q, Fenner MD, Abrams GW, Pan ZH (2019) Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions.Mol Ther 27(6): Mol Ther. 2019 Jun 5;27(6):1195-1205. https://doi.org/10.1016/j.ymthe.2019.04.002. Epub 2019 Apr 9.