Аннотация
Установлено, что в июне 2018 в период размножения спектр питания тонкоклювых кайр (Uria aalge) и толстоклювых кайр (Uria lomvia), гнездящихся на Гавриловских островах Баренцева моря, состоял из мелких рыб (мойва (Mallotus villotus), сайда (Pollachius virens) и молодь трески (Gadus morhua)) и ракообразных. В дистальном отделе тонкого кишечника у тонкоклювой кайры паразитировали цестоды Alcataenia allmillaris, а y толстоклювой кайры – A. almillaris и Tetrabothrius erostris. У тонкоклювой кайры в кишечнике общая активность аминопептидазы N была выше, а общая активность мальтазы выше в кишечнике толстоклювых кайр. Активность дисахаридаз в тонком кишечнике кайр в дистальном направлении снижалась, активность аминопептидазы N увеличивалась. В месте паразитирования цестод A. almillaris и T. erostris в дистальном отделе кишечника y толстоклювой кайры снижалась активность и аминопептидазы N, и мальтазы.
Литература
Krasnov YV, Barrett RT, Nikolaeva NG (2007) Status of black-legged kittiwakes (Rissa tridactyla), common guillemots (Uria aalge) and Brünnoch’s guillemots (U. lomvia) in Murman, north-west Russia, and Varanger, north-east Norw. Polar Res 26:113–117. https://doi.org/10.1111/j.1751-8369.2007.00015.x.
Anker-Nilssen T, Bakken V, Strøm H, Golovkin AN, Bianki VV, Tatarinkova IP (2000) The Status of Marine Birds Breeding in the Barents Sea Region; Norsk Polarinstitutt: Tromsø, Norway, 213 pp.
Spring L (1971) A comparison of functional and morphological adaptations in the common murre (Uria aalge) and thick-billed murre (Uria lomvia). The Condor 73:1–27. https://doi.org/10.2307/1366120.
Jackson S, Place AR, Seiderer LJ (1992) Chitin digestion and assimilation by seabirds. The Auk 109:758–770. https://doi.org/10.2307/4088151.
Place AR (1992) Comparative aspects of lipid digestion and absorption: physiological correlates of wax ester digestion. Am J Physiology-Regulatory 263:464–471. https://doi.org/10.1152/ajpregu.1992.263.3.R464.
Kerry KR (1969) Intestinal disaccharidase activity in a monotremeand eight species of marsupials (with an added note on the disaccharidases of five species of seabirds). Comp Biochem Physiol 29:1015–1022. https://doi.org/10.1016/0010-406X(69)91003-2.
Kuklina MM, Kuklin VV (2012) Activity of digestive enzymes of thick-billed guillemot (Uria lomvia) and common guillemot (U. aalge) invaded by cestodes. J Evol Biochem Physiol 48:272–279. https://doi.org/10.1134/S0022093012030036.
Chediack JG, Furres SC, Cid FD, Filippa V, Caviedes-Vidal E (2012) Effect of fasting on the structure and function of the gastrointestinal tract of house sparrows (Passer domesticus). Compar Biochem Physiol Part A. 163:103–110. https://doi.org./10.1016/j.cbpa.2012.05.189.
Gatica-Sosa C, Brzẹk P, Chedlack JG, Cid FD, Karasov WH, Caviedes-Vidal E (2016) Differential transcriptional responses underlie dietary induction of intestinal carbohydrase activities in house sparrow nestlings. Animal Physiology and Animal Nutrition. 100: 236–242. https://doi.org/10.1111/jpn.12354.
Garro C, Brun A, Caviedes-Vidal E (2017) Aminopeptidase activity is related to the amino acids composition of the food to passerine birds. PeerJ Preprints e3443v2. https://doi.org/10.7287/peerj.preprints.3443v2.
Ramirez-Otarola N, Naya DE, Sabat P (2018) Seasonal changes in digestive enzymes in five bird species. Canad J Zool 96: 707–712. https://doi.org/10.1139/cjz-2017-0350.
Newman J, Maurer M, Forbey JS, Brittas R, Iohansson Ö, Nielsen Ó, Willebrand T, Kohl KD (2021) Low activities of digestive enzymes in the guts of herbivorous grouse (Aves: Tetraoninae). J Ornithol 162: 477–485. https://doi.org/10.1007/s10336-020-01835-z.
Dalton JP, Skelly P, Halton DW (2004) Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can J Zool 82:211–232. https://doi.org/10.1139/z03-213.
Kuklina MM, Kuklin VV (2016) The activities of digestive enzymes as a determinant factor in the localization of Tetrabothrius erostris (Loennberg) (Cestoda: Tetrabothriidae) in the intestine of the herring gull Larus argentatus Pontoppidan. Inland Water Biology 9:82–88. https://doi.org/10.1134/S1995082916010107.
Izvekova GI, Frolova TV, Izvekov EI (2017) Adsorption and inactivation of proteolytic enzymes by Triaenophorus nodulosus (Cestoda). Helmintologia 54:3–10. https://doi.org/10.1515/helm-2017-0001.
Ashford RW (1971) Blood parasites and migratory fat at lake Chad. Ibis 113:100–101. https://doi.org./10.1111/j.1474-919X.1971.tb05127.x.
Ramirez-Otarola N, Narváez C, Sabat P (2011) Membrane-bound intestinal enzymes of passerine birds; dietary and phylogenetic correlates. Compar Physiol Part B 181:817–827. https://doi.org/ 10.1007/s00360-011-0557-3.
Dahlqvist A (1968) Assay of intestinal disaccharidases. Anal Biochem 22:99–107. https://doi.org./10.1016/0003-2697(68)90263-7.
Martínez del Rio C (1990) Dietary, phylogenetic, and ecological correlates of intestinal sucrose and maltase activity in birds. Physiol Zool 63:87–1011. https://doi.org/10.1086/physzool.63.5.30152625.
Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6: 24–27. https://doi.org/10.1177/000456326900600108.
Campana SE (2004) Photographic atlas of fish otoliths of the Northwest Atlantic oceans. National Research Council Canada, Ottawa 284 p.
Ryzhikov KM, Rusavy B, Khokhlova IG, Tolkatchova LM, Kornyuchin VV (1985) Helminths of Fish-Eating Birds of the Palaearctic Region II. Cestoda and Acanthocephales. Academia Praha 412 p.
Shimazu T (1975) On the parasitic organisms in a krill, Euphausia similis, from Suruga Bay. V. Larval cestodes. Jap J Parasitol 24:122–128.
Ежов АВ (2019) Реакций моевок (Rissa tridactyla) и кайр (Uria aalge и U.lomvia) Мурмана на многолетнюю нестабильность кормовой базы в Баренцевом море. Вестник ТвГУ Сер «Биол экол» 53: 72–82. [Ezhov AV (2019) Murman kittiwake (Rissa tridactyla) and guillemot (Uria aalge и U.lomvia) reaction on the long-term instability of food availability in Barents Sea. Herald of Tver St Univ. Series: Biol Ecol 53: 72–82. (in Russ)].
Mehlum F (2001) Crustaceans in the diet of adult common and Brünnich’s guillemots Uria aalge and U. lomvia in the Barents Sea during the breeding period. Marine Ornithology 29:19–22.
Karasov WH, Diamond JM (1988) Interplay between physiology and ecology in digestion. BioScience 38:602–611. https://doi.org/10.2307/1310825.
Sabat P (2000) Intestinal disaccharidases and aminopeptidase-N in two species of Cinclodes (Passerine: Furnaridae). Revista Chilena de Historia Natural 73: 345–350. http://dx.doi.org/10.4067/S0716-078X2000000200009.
Afik DL, Caviedes-Vidal E, Martínez del Rio C, Karasov WH (1995) Dietary modulation of intestinal hydrolytic enzymes in yellow-rumped warblers. Am J Physiol 269:420–423. https://doi.org./10.1152/ajpregu.1995.269.2.R413.
Kohl KD, Ciminari ME, Chedlack JG, Leafloor JO, Karasov WH, McWilliams SR, Caviedes-Vidal E (2017) Modulation of digestive enzyme activities in the avian digestive tract in relation to diet compisition and quality. J Comp Physiol B 187:339–351. https://doi.org/10.1007/s00360-016-1037-6.
Karasov WH (1996) Digestive plasticity in avian energetics and feeding ecology, p. 61–84. In C. Carey [ED.], Avian energetics and nutritional ecology. Chapman and Hall, New York. https://doi.org/10.1007/978-1-4613-0425-8_3.
Hilton GM, Furness RW, Houston DC (2000 a) A comparative study of digestion in North Atlantic seabirds. J Avian Biol 31: 36–46.
Hilton GM, Furness RW, Houston DC (2000 b) The effects of diet switching and mixing on digestion in seabirds. Funct Ecol 14:145–154. https://doi.org/10.1046/j.1365-2435.2000.00403.x.
Martínez del Rio C, Brugger E, Rios JL, Vergara ME, Witmer M (1995) An experimental and comparative study of dietary modulation of intestinal enzymes in European Starlings (Sturnus vulgaris). Physiol Biochem Zool 68:490–511. https://doi.org/10.1086/physzool.68.3.30163781.
McWilliams SR, Caviedes-Vidal E, Karasov WH (1999) Digestive adjustments in Cedar Waxwings to high feeding rate. J Exp Zool 283: 394–407. https://doi.org/10.1002/(SICI)1097-010X(19990301/01)283:4/5<394::AID-JEZ9>3.0.CO;2-0.
Sabat P, Gonzalez SP (2003) Digestive enzymes in two species of marine cinclodes (Passeriformes: Furnariidae). The Condor 105: 830–833. https://doi.org/10.1093/condor/105.4.830.
Hume ID (1998) Optimization in design of the digestive system. In E.R. Weibel, C.R. Taylor, L. Bolis [Eds.]. Principles of animal design. Cambridge Univ Press, Cambridge UK. 212–219.
Kuklina MM, Kuklin VV (2018) Effect of cestodal infestation on the distribution pattern of digestive enzyme activities along the small intestine of the kittiwake. J Evol Biochem Physiol 54: 257–263. https://doi.org/10.1134/S0022093018040051.
Izvekova GI, Kuklina MM, Frolova TV (2017) Inactivation of proteolic enzymes by cestodes. Doklady Biological Sciences 475:161–164. https://doi.org/10.1134/S0012496617040081.
Frolova TV, Izvekov EI, Solovyev MM, Izvekova GI (2019) Activity of proteolytic enzymes in the intestine of bream Abramis brama infected with cestodes Caryophyllaeus laticeps (Cestoda, Caryophyllidea). Comp Biochem Physiol Part B 235: 38–45. https://doi.org/10.1016/j.cbpb.2019.05.009.
Куклин ВВ, Куклина ММ (2005) Гельминты птиц Баренцева моря: фауна, экология, влияние на хозяев. Апатиты: Изд-во Кольского научного центра РАН. 289 с. [ Kuklin VV, Kuklina MM (2005) Helminths of birds of the Barents Sea: fauna, ecology, impact on the hosts. Apatity: Publ. KSC RAS. 289 p. (in Russ)].
Muzaffar SB (2009) Helminths of murres (Alcidae: Uria spp.): markers of ecological change in the marine environment. J Wildlife Diseases 45: 672–683. https://doi.org/10.7589/0090-3558-45.3.672.
Kuklin VV (2017) Comprehensive and comparative analysis of the helminth fauna of the dominant colonial seabird species on the Murman coast. Biological Bulletin 44: 827–843. https://doi.org/10.1134/S1062359017080118.