ХАРАКТЕР ЛОКАЛИЗАЦИИ GABA-ИММУНОПОЗИТИВНЫX НЕЙРОНОВ И УРОВЕНЬ ЭКСПРЕССИИ GAT1 ТРАНСПОРТЕРА GABA В НЕОКОРТЕКСЕ КРЫС ПОСЛЕ ВОЗДЕЙСТВИЯ ГИПОКСИИ В НЕОНАТАЛЬНЫЙ ПЕРИОД
PDF

Ключевые слова

неокортекс
гипоксия
GABA
транспортер GAT1
неонатальный период

Аннотация

Целью работы было изучение распределения нейронов, содержащих GABA, и уровня экспрессии GAT1 в разных слоях неокортекса крыс в неонатальный период после перинатальной гипоксии. Воздействие гипоксии на мозг новорожденных крыс осуществляли на 2-е неонатальные сутки в течение 1 ч при содержании кислорода в дыхательной смеси - 7.8%. Были применены иммуногистохимические реакции на выявление GABA и GAT1. Изучали соматосенсорную область неокортекса на 5 и 10 постнатальные сутки (П5, П10). Показано, что на ранних сроках неонатального периода (П5) воздействие перинатальной гипоксии приводит к увеличению числа тормозных интернейронов во всех слоях неокортекса. К концу неонатального периода (П10) их численность в слоях коры снижается, а в слое V значительно сокращается.

На протяжении неонатального периода у контрольных животных во всех слоях неокортекса уровень экспрессии GAT1 постепенно повышается, после воздействия перинатальной гипоксии происходит значительное снижение экспрессии GAT1, в том числе, в слоях неокортекса, где количество GABAергических нейронов соответствует контрольному значению. Эти факты свидетельствуют о том, что воздействие острой перинатальной гипоксии может приводить к изменению синаптической трансмиссии GABA в всех слоях неокортекса в конце неонатального периода.

https://doi.org/10.31857/S0044452922060043
PDF

Литература

Otellin VA, Khozhai LI, Shishko TT, Vershinina EA (2021) Nucleolar ultrastructure in neurons of the rat neocortical sensorimotor area during the neonatal period after perinatal hypoxia and its pharmacological correction. J Evol Biochem Phesiol 57:1251–1256. https://doi.org/ 10.1134/S0022093021060053

McClendon E, Kevin C, Gong Х, Sharifnia Е, Hagen М, Cai V, Shaver D, Riddle А, Dean JM, Gunn AJ, Mohr C, Kaplan JS, Rossi DJ, Kroenke CD., Hohimer AR, Back SA (2014) Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol 75:508–524. https://doi.org/ 10.1002/ana.24100.

Pozdnyakova N, Dudarenko M, Borisova T (2019) Age-dependency of levetiracetam effects on exocytotic GABA release from nerve terminals in the hippocampus and cortex in norm and after perinatal hypoxia. Cellul Mol Neurobiol 39:701–714. https://doi.org/ 10.1007/s10571-019-00676-6.

Fishell G, Rudy B ( 2011) Mechanisms of inhibition within the telencephalon: “where the wild things are". Annu Rev Neurosci 34:535–567. https://doi.org/ 10.1146/annurev-neuro-061010-113717

Sahara S, Yanagawa Y, O’Leary DD, Stevens CF ( 2012) The fraction of cortical GABAergic neurons is constant from near the start of cortical neurogenesis to adulthood. J Neurosci 32: 4761–4761. https://doi.org/ 10.1523/JNEUROSCI.6412-11.2012

Хожай ЛИ, Отеллин ВА (2021) Реорганизация сети интернейронов, экспрессирующих парвальбумин, в неокортексе крыс после перинатальной гипоксии и возможность ее формакологической коррекции. Рос Физиол Ж107:1–10. [Khozhai LI, Otellin VA (2021) Reorganization of a network of interneurons expressing parvalbumin in the rat’s neocortex after perinatal hypoxia and the possibility of its pharmacological correction. Russ J Physiol 107:1–10. (In Russ)]. https://doi.org/10.31857/S0869813921100125

Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 63: 461–468. https://doi.org/10.1002/jnr.1040.

Augood SJ, Herbison AE, Emson PC (1995) Localization of GAT-1 GABA transporter mRNA in rat striatum: cellular coexpression with GAD67 mRNA, GAD67 immunoreactivity, and parvalbumin mRNA. J Neurosci 15:865–874. https://doi.org/ 10.1523/JNEUROSCI.15-01-00865.1995.

Bernstein EM, Quick MWJ (1999) Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. Biol Chem. 274:889–895. https://doi.org/ 10.1074/jbc.274.2.889.

Fattorini G, Melone M, Conti F (2020) A reappraisal of GAT-1 localization in neocortex. Front Cell Neurosci 14: 9–20. https://doi.org/ 10.3389/fncel.2020.00009.

Loo DD, Eskandari S, Boorer KJ (2000) Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J Biol Chem 275:37414–37422. https://doi.org/ 10.1074/jbc.M007241200.

Lu CC, Hilgemann DW (1999) GAT1 (GABA:Na+:Cl-) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J Gen Physiol 114:429–444. https://doi.org/ 10.1085/jgp.114.3.429.

Qian Z, Lin Y, Xing J, Qiu Y, Ren L (2018) Expression and functions of glutamate and γ-aminobutyric acid transporters in ischemic models. Mol Med Rep. 17: 8196–8202. https://doi.org/10.3892/mmr.2018.8888.

Khazipov R, Zaynutdinova D, Ogievetsky E, Valeeva G, Mitrukhina O, Manent J-B, Represa A (2015) Atlas of the postnatal rat brain in stereotaxic coordinates. Front Neuroanat 9:161. https://doi.org 10.3389/fnana.2015.00161.

Guthmann A, Fritschy JM, Ottersen OP, Torp R, Herbert H (1998) GABA, GABA transporters, GABA (A) receptor subunits and GAD mRNAs in the rat parabrachial and Kölliker-Fuse nuclei. J Comp Neurol 400: 229–243.

Butt SJ, Stacey JA, Teramoto Y, Vagnoni C (2017) A role for GABAergic interneuron diversity in circuit development and plasticity of the neonatal cerebral cortex. Curr Opin Neurobiol 43: 149–155. https://doi.org/ 10.1016/j.conb.2017.03.011.

Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marín O. (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 27: 9682–9695. https://doi.org/ 10.1523/JNEUROSCI.2750-07.2007.

Gelman DM, Marín O (2010) Generation of interneuron diversity in the mouse cerebral cortex. Eur J Neurosci 31: 2136–2141. https://doi.org/ 10.1111/j.1460-9568.2010.07267.x.

Fogarty M, Grist M, Gelman D, Marín O, Pachnis V, Kessaris N (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27: 10935–10946. https://doi.org/ 10.1523/JNEUROSCI.1629-07.2007.

Taniguchi H., Lu J., Huang Z.J. (2013) The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339: 70–74. https://doi.org/ 10.1126/science.1227622.

Teppola H, Aćimović J, Linne ML (2019) Unique features of network bursts emerge from the complex interplay of excitatory and inhibitory receptors in rat neocortical networks. Front Cell Neurosci 13: 377388. https://doi.org/ 10.3389/fncel.2019.00377.

Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes GL (2008) Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol 100: 609–619. https://doi.org/ 10.1152/jn.90402.2008.

Hanson E, Armbruster M, Lau LA, Sommer ME, Klaft ZJ, Swanger SA (2019) Tonic activation of GluN2C/GluN2D-containing NMDA receptors by ambient glutamate facilitates cortical interneuron maturation. J Neurosci 39: 3611–3626. https://doi.org/ 10.1523/JNEUROSCI.1392-18.2019.

Flossmann T, Kaas T, Rahmati V, Kiebel SJ, Witte OW, Holthoff K (2019) Somatostatin interneurons promote neuronal synchrony in the neonatal hippocampus. Cell Rep 26:3173–3182. https://doi.org/ 10.1016/j.celrep.2019.02.061.

Sukenik N, Vinogradov O, Weinreb E, Segal M, Levina A, Moses E (2021) Neuronal circuits overcome imbalance in excitation and inhibition by adjusting connection numbers. Proc Natl Acad Sci USA 118: e2018459118. https://doi.org/ 10.1073/pnas.2018459118.

Fishell G, Rudy B (2011) Mechanisms of inhibition within the telencephalon: “where the wild things are”. Annu Rev Neurosci 34: 535–567. https://doi.org/10.1146/annurev-neuro-061010-113717.

Sahara S, Yanagawa Y, O’Leary DD, Stevens CF (2012) The fraction of cortical GABAergic neurons is constant from near the start of cortical neurogenesis to adulthood. J Neurosci 32: 4755–4761. https://doi.org/ 10.1523/JNEUROSCI.6412-11.2012.

Bartolini G, Ciceri G, Marín O (2013) Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults. Neuron 79: 849–864. https://doi.org/ 10.1016/j.neuron.2013.08.014.

Marín O, Rubenstein JLR (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11): 780–790. https://doi.org/ 10.1038/35097509.

Marín-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21: 64–71. https://doi.org/ 10.1016/s0166-2236(97)01164-8.

Soriano E, del Río JA (2005) The cells of cajal-retzius: still a mystery one century after. Neuron 46: 389–394. https://doi.org/10.1016/j.neuron.2005.04.019.

Hevner RF, Neogi Т, Englund С, Daza RAM, Fink А (2003) Cajal–Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Devel Brain Res 141: 39–53. https://doi.org/ 10.1016/s0165-3806(02)00641-7.

Villar-Cerviño V, Molano-Mazón М, Catchpole Т, Valdeolmillos М, Henkemeyer М, Martínez LM, Borrell V, Marín О (2013) Contact repulsion controls the dispersion and final distribution of Cajal-Retzius cells. Neuron 77: 457–471. https://doi.org/ 10.1016/j.neuron.2012.11.023.

Cosgrove KE, Maccaferri G (2012) mGlu1α-dependent recruitment of excitatory GABAergic input to neocortical Cajal-Retzius cells. Neuropharmacology 63: 486–493. https://doi.org/ 10.1016/j.neuropharm.2012.04.025.

Dvorzhak A, Myakhar O, Unichenko P, Kirmse K, Kirischuk S (2010) Estimation of ambient GABA levels in layer I of the mouse neonatal cortex in brain slices. J Physiol 588: 2351–2360. https://doi.org/ 10.1113/jphysiol.2010.187054.

Pozdnyakova N, Dudarenko M, Yatsenko L, Himmelreich N, Krupko O, Borisova T (2014) Perinatal hypoxia: different effects of the inhibitors of GABA transporters GAT1 and GAT3 on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals. Croat Med J 55: 250–258. https://doi.org/10.3325/cmj.2014.55.250.

Qian Z, Lin Y, Xing J, Qiu Y, Ren L (2018) Expression and functions of glutamate and γ-aminobutyric acid transporters in ischemic models. Mol Med Rep 17: 8196–8202. https://doi.org/ 10.3892/mmr.2018.8888).

Hamasaki T, Goto S, Nishikawa S, Ushio Y (2003) Neuronal cell migration for the developmental formation of the mammalian striatum. Brain Res Rev 41:1–12. https://doi.org/ 10.1016/s0165-0173(02)00216-3.

Warm D, Schroer J, Sinning A (2021) Gabaergic interneurons in early brain development: conducting and orchestrated by cortical network activity. Front Mol Neurosci 14: 807969. https://doi.org/ 10.3389/fnmol.2021.807969

Dean J, McClendon E, Hansen K, Azimi-Zonooz A, Chen K, Riddle A, Gong X, Sharifnia E, Hagen M, Ahmad T, Leigland L, Hohimer A, Kroenke C, Back S (2013) Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci Transl Med 5(168): 168ra7. https://doi.org/ 10.1126/scitranslmed.3004669.