СЛУХОВАЯ АДАПТАЦИЯ К ХАРАКТЕРИСТИКАМ РЕЧЕВОГО СИГНАЛА
PDF

Ключевые слова

слуховое восприятие речи
слуховая адаптация
речевой сигнал
экстралингвистические характеристики речи
эффект вечеринки
слуховое внимание

Аннотация

В обзоре представлены данные исследований слуховой адаптации к ключевым параметрам речи – временным (темпо-ритмическим) и спектральным характеристикам голосового речевого сигнала, включая частоту основного тона голоса, формантные частоты, особенности тембра. Рассмотрены проявления адаптации к нелингвистическим характеристикам голоса – полу и возрасту диктора, его эмоциональному состоянию. Показано, как механизмы адаптации участвуют в разделении конкурирующих речевых потоков и в механизмах слухового внимания. Обсуждается роль слуховой адаптации в становлении речевого слуха и формировании голосовых прототипов в процессе онтогенеза. Приведены основные модели процесса восприятия речи и данные по изучению нейрофизиологических механизмов фонематического анализа, на основе которых они формировались. Представлены результаты экспериментальных и модельных исследований, которые свидетельствуют о том, что адаптационные процессы играют важную роль в усилении контраста сигнала с фоном и приводят к улучшению идентификации сигнала. Рассмотренные в обзоре особенности слуховой адаптации к речевому сигналу имеют практическое значение для организации реабилитационных мероприятий по восстановлению и развитию речевого слуха пациентов после слухопротезирования, а также для разработки технических систем распознавания речи.

https://doi.org/10.31857/S0044452922050035
PDF

Литература

Bronkhorst AW (2015) The cocktail-party problem revisited: early processing and selection of multi-talker speech. Attention Perception & Psychophysics 77(5):1465–1487. https://doi.org/10.3758/s13414-015-0882-9

Qian Ym, Weng C, Chang Xk, Wang S, Yu D (2018) Past review, current progress, and challenges ahead on the cocktail party problem. Front Inf Technol Electronic Eng 19(1):40–63. https://doi.org/10.1631/FITEE.1700814

Andreeva IG (2018) Spatial Selectivity of Hearing in Speech Recognition in Speech-shaped Noise Environment. Human Physiol 44(2):226–236. https://doi.org/10.1134/S0362119718020020

Misurelli SM, Litovsky RY (2012) Spatial release from masking in children with normal hearing and with bilateral cochlear implants: Effect of interferer asymmetry. J Acoust Soc Am 132(1):380–391. https://doi.org/10.1177/1084713808325880

Pérez-González D, Malmierca MS (2014) Adaptation in the auditory system: an overview. Front Integr Neurosci 8:19. https://doi.org/10.3389/fnint.2014.00019

Auerbach BD, Gritton HJ (2022) Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 16:799787. https://doi.org/10.3389/fnins.2022.799787

Licklider JCR (1948) The influence of interaural phase relations upon the masking of speech by white noise. J Acoust Soc Am 20:150. https://doi.org/10.1121/1.1906358

Durlach NI, Mason CR., Kidd JrG, Arbogast TL, Colburn HS, Shinn-Cunningham BG (2003) Note on informational masking (L). J Acoust Soc Am 113(6):2984–2987. https://doi.org/10.1121/1.1570435

Brungart DS (2001) Informational and energetic masking effects in the perception of two simultaneous talkers. J Acoust Soc Am 109(3):1101–1109. https://doi.org/10.1121/1.1345696

Freyman RL, Helfer KS, McCall DD, Clifton RK (1999) The role of perceived spatial separation in the unmasking of speech. J Acoust Soc Am 106(6):3578–3588. https://doi.org/10.1121/1.428211

Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34(3):437–446. https://doi.org/10.1016/S0896-6273(02)00659-1

Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689. https://doi.org/10.1038/nn1541

Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin Neurobiol 17:423–429. https://doi.org/10.1016/j.conb.2007.07.001

Robinson BL, McAlpine D (2009) Gain control mechanisms in the auditory pathway. Curr Opin Neurobiol 19:402–407. https://doi.org/10.1016/j.conb.2009.07.006

Rabinowitz NC, Willmore BDB, King AJ, Schnupp JWH (2013) Constructing noise-invariant representations of sound in the auditory pathway. PLoS Biol 11:e1001710. https://doi.org/10.1371/journal.pbio.1001710

Mesgarani N, David SV, Fritz JB, Shamma SA (2014) Mechanisms of noise robust representation of speech in primary auditory cortex. Proc Natl Acad Sci U S A 111:6792–6797. https://doi.org/10.1073/pnas.131801711

Narayan R, Best V, Ozmeral E, McClaine E, Dent M, Shinn-Cunningham B, Sen K (2007) Cortical interference effects in the cocktail party problem. Nat Neurosci 10:1601–1607. https://doi.org/10.1038/nn2009

Moore RC, Lee T, Theunissen FE (2013) Noise-invariant neurons in the avian auditory cortex: hearing the song in noise. PLoS Comput Biol 9: e1002942. https://doi.org/10.1371/journal.pcbi.1002942

Schneider DM, Woolley SMN (2013) Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron 79:141–152. https://doi.org/10.1016/j.neuron.2013.04.038

Kröger JL, Lutz OHM, Raschke P (2020) Privacy Implications of Voice and Speech Analysis - Information Disclosure by Inference. In: Friedewald M, Önen M, Lievens E, Krenn S, Fricker S (eds) Privacy and Identity Management. Data for Better Living: AI and Privacy. IFIP Advances in Information and Communication Technology. Springer Cham 576:242–258. https://doi.org/10.1007/978-3-030-42504-3_16

Jin H, Wang S (2018) Voice-based determination of physical and emotional characteristics of users U.S. Patent No. 10,096,319. Washington, DC: U.S. Patent and Trademark Office. https://www.us.hsbc.com/customer-service/voice

Zwicker E (1964) ‘Negative afterimage’ in hearing. J Acoust Soc Am 36:2413–2415. https://doi.org/10.1121/1.1919373

Hoke ES, Hoke M, Ross B (1996) Neurophysiological correlate of the audi­tory after-image ‘Zwicker tone’. Audiol Neuro-Otol 1:161–174. https://doi.org/10.1159/000259196

Noren AJ, Eggermont JJ (2003) Neural correlates of an auditory afterimage in primary auditory cortex. J Assoc Res Otolaryngol 4:312–328.

Micheyl C, Carlyon RP, Gutschalk A, Melcher JR, Oxenham AJ, Rauschecker JP, Tian B, Courtenay WE (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229:116–131. https://doi.org/10.1016/j.heares.2007.01.007

Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133:780–799. https://doi.org/10.1037/0033-2909.133.5.780

Hausfeld L, Riecke L, Valente G, Formisano E (2018) Cortical tracking of multiple streams outside the focus of attention in naturalistic auditory scenes Neuroimage 181:617–626. https://doi.org/10.1016/j.neuroimage.2018.07.052

Stilp CE (2020) Acoustic context effects in speech perception. Wiley interdisciplinary reviews. Cognit Sci 11(1):1–8. https://doi.org/10.1002/wcs.1517

Rosenblith WA, Miller GA, Egan JP, Hirsh IJ, Thomas GJ (1947) An auditory afterimage? Science 106:333–335. https://doi.org/10.1126/science.106.2754.333

Огородникова ЕА (1978) Эффект "селективной адаптации" при восприятии элементарных неречевых стимулов. Физиол журн СССР 64(12): 1803-1808. [Ogorodnikova EA (1978) The effect of selective adaptation on perception of elementary non-speech stimuli. Sechenov Physiol J USSR. 64(12):1803–1807. (In Russ)].

Gutschalk A, Michey C, Oxenham AJ (2008) The pulse-train auditory aftereffect and the perception of rapid amplitude modulations/ J Acoust Soc Am 123(2):935–945. https://doi.org/10.1121/1.2828057

Shima S, Murai Y, Hashimoto Y, Yotsumoto Y (2016) Duration Adaptation Occurs Across the Sub- and Supra-Second Systems. Front Psychol 7:114. https://doi.org/10.3389/fpsyg.2016.00114

Becker MW, Ian P, Rasmussen IP (2007) The rhythm aftereffect: Support for time sensitive neurons with broad overlapping tuning curves. Brain and Cognition 64:274–281. https://doi.org/10.1016/j.bandc.2007.03.009

Masutomi, K, Kashino M (2013) Frequency-change aftereffect produced by adaptation to real and illusory unidirectional frequency sweeps. J Acoust Soc Am 134(1):EL14–EL18.

Wang N, Oxenham AJ (2014) Spectral motion contrast as a speech context effect. J Acoust Soc Am 136(3):1237–1245. https://doi.org/10.1121/1.4892771

Frissen I, Vroomen J, de Gelder B, Bertelson P (2003) The aftereffects of ven­triloquism: are they sound-frequency specific? Acta Psychol (Amst) 113(3):315–327. https://doi.org/10.1016/S0001-6918(03)00043-X

Phillips DP, Hall SE (2005) Psychophysical evidence for adaptation of cen­tral auditory processors for interaural differences in time and level. Hear Res 202(1–2):188–199. https://doi.org/10.1016/j.heares.2004.11.001

Malinina ES (2014) Perception of approaching and withdrawing sound sources following exposure to broadband noise. The effect of spatial domain. Zh Evol Biokhim Fiziol 50(1):59–68.

Ehrenstein WH (1978) Direction-specific acoustical aftereffects. J Acoust Soc Am 64 (Suppl. 1):S35. https://doi.org/10.1121/1.2004165

Grantham DW, Wightman FL (1979) Detectability of a pulsed tone in the presence of a masker with time-varying interaural correlation. J Acoust Soc Am 65:1509–1517. https://doi.org/10.1121/1.382915

Andreeva IG, Malinina ES (2010) Auditory Motion Aftereffects of Approaching and Withdrawing Sound Sources. Human Physiol 36(3):290–294. https://doi.org/10.1134/S0362119710030060

Eimas PD, Corbit JD (1973) Selective adaptation of linguistic feature detectors. Cogn Psychol 4:99–109. https://doi.org/10.1016/0010-0285(73)90006-6

Landahl KL, Blumstein SE (1982) Acoustic invariance and the perception of place of articulation: a selective adaptation study. J Acoust Soc Am 71(5):1234–1241. https://doi.org/10.1121/1.387772

Sussman JE (1993) Auditory processing in children's speech perception: Results of selective adaptation and discrimination tasks. J Speech Hear Res 36(2):380–395. https://doi.org/10.1044/jshr.3602.380

Schweinberger SR, Casper C, Hauthal N, Kaufmann JM, Kawahara H, Kloth N, Robertson DMC, Simpson AP, Zäske R (2008) Auditory Adaptation in Voice Perception. Curr Biol 18:684–688. https://doi.org/10.1016/j.cub.2008.04.015

Latinus M, Belin P (2011) Human voice perception. Curr Biol 21:R143–R145. https://doi.org/10.1016/j.cub.2010.12.033

Skuk VG, Schweinberger SR (2013) Adaptation Aftereffects in Vocal Emotion Perception Elicited by Expressive Faces and Voices. PLoS One 8(11):e81691. https://doi.org/10.1371/journal.pone.0081691

Bestelmeyer PEG, Mühl C (2021) Individual differences in voice adaptability are specifically linked to voice perception skill. Cognition 210(1):104582. https://doi.org/10.1016/j.cognition.2021.104582

Lublinskaya VV, Ross J (1991) Perception of the temporal structure in speech-like sound sequence. Proc XIIth Int Congress Phon Sci:318–321.

Darwin CJ, Bethell-Fox CE (1977) Pitch Continuity and Speech Source Attribution. J Exp Psychol: Human Perception and Performance 3(4):665–672. https://doi.org/10.1037/0096-1523.3.4.665

Dauer RM (1983) Stress-timing and syllable-timing reanalyzed. J Phonet 11:51–62. https://doi.org/10.1016/S0095-4470(19)30776-4

Lidji P, Palmer C, Peretz I, Morningstar M (2011) Listeners feel the beat: entrainment to English and French speech rhythms. Psychon Bull Rev 18:1035–1041. https://doi.org/10.3758/s13423-011-0163-0

Lehiste I (1977) Isochrony reconsidered. J Phonet 5:253–263. https://doi.org/10.1016/S0095-4470 (19)31139-8

Lerdahl F (2001) The sounds of poetry viewed as music. Ann NY Acad Sci 930:337–354. https://doi.org/10.1111/j.1749-6632.2001.tb05743.x

Obermeier C, Menninghaus W, von Koppenfels M, Raettig T, Schmidt-Kassow M, Otterbein S, Kotz SA (2013) Aesthetic and emotional effects of meter and rhyme in poetry. Front Psychol 4:10. https://doi.org/10.3389/fpsyg.2013.00010

Obermeier C, Kotz SA, Jessen S Raettig T, Von Koppenfels M, Menninghaus W (2016) Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials. Cogn Affect Behav Neurosci 16:362–373. https://doi.org/10.3758/s13415-015-0396-x

Cummins F (2009) Rhythmas entrainment: the case of synchronous speech. J Phonet 37:16–28. https://doi.org/10.1016/j.wocn.2008.08.003

Grahn JA (2009) The role of the basal ganglia in beat perception: neuroimaging and neuropsychological investigations. Ann NY Acad Sci 1169:35–45. https://doi.org/10.1111/j.1749-6632.2009.04553.x

Nozaradan S, Schwartze M, Obermeier C, Kotz SA (2017) Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex 95:156–168. https://doi.org/10.1016/j.cortex.2017.08.015

Bóna J (2016) Characteristics of pausing in normal, fast and cluttered speech. Clin Linguist Phon 30 (11):888–898. https://doi.org/10.1080/02699206.2016.1188421

Zäske R, Schweinberger SR, Kaufmann JM, Kawahara H (2009) In the ear of the beholder: neural correlates of adaptation to voice gender. Eur J Neurosci 30:527–534. https://doi.org/10.1111/j.1460-9568.2009.06839.x

Zäske R, Schweinberger SR (2011) You are only as old as you sound: Auditory aftereffects in vocal age perception. Hear Res 282:283–288. https://doi.org/10.1016/j.heares.2011.06.008

Kawahara H, Matsui H (2003) Auditory morphing based on an elastic perceptual distance metric in an interference-free time-frequency representation. Proc 2003 IEEE Int Confer Acoustics, Speech, and Signal Processing (Piscataway, NJ: IEEE):256–259. https://doi.org/10.1109/ICASSP.2003.1198766

Belin P, Zatorre RJ (2003) Adaptation to speaker’s voice in right anterior temporal lobe. Neuroreport 14:2105–2109. https://doi.org/10.1097/01.wnr.0000091689.94870.85

Lattner S, Meyer ME, Friederici AD (2005) Voice perception: Sex, pitch, and the right hemisphere. Hum Brain Mapp 24:11–20. https://doi.org/10.1002/hbm.20065

Banse R, Scherer KR (1996) Acoustic profiles in vocal emotion expression. J Pers Soc Psychol 70:614–636. https://doi.org/10.1037/0022-3514.70.3.614

Montepare J, Koff E, Zaitchik D, Albert M (1999) The use of body movements and gestures as cues to emotions in younger and older adults. J Nonverbal Behav 23:133–152. https://doi.org/10.1023/A:1021435526134

Dael N, Mortillaro M, Scherer KR (2012) Emotion expression in body action and posture. Emotion 12:1085–1101. https://doi.org/10.1037/a0025737

Grandjean D (2020) Brain networks of emotional prosody processing. Emot Rev 13(1):34–43. doi: 10.1177/1754073919898522

Bestelmeyer PE, Rouger J, DeBruine LM, Belin P (2010) Auditory adaptation in vocal affect perception. Cognition 117:217–223. https://doi.org/10.1016/j.cognition.2010.08.008

Zäske R, Schweinberger SR, Kawahara H (2010) Voice aftereffects of adaptation to speaker identity. Hear Res 268:38–45. https://doi.org/10.1016/j.heares.2010.04.011

Nussbaum C, von Eiff CI, Skuk VG, Schweinberger SR (2022) Vocal emotion adaptation aftereffects within and across speaker genders: Roles of timbre and fundamental frequency. Cognition 219(7):104967. https://doi.org/10.1016/j.cognition.2021.104967

Latinus M, Belin P (2011) Anti-voice adaptation suggests prototype-based coding of voice identity. Front Psychol 2: Article 175. https://doi.org/10.3389/fpsyg.2011.00175

Andics A, Mcqueen JM, Petersson KM, Gal V, Rudas G, Vidnyanszky Z (2010) Neural mechanisms for voice recognition. Neuroimage 52(4):1528–1540. https://doi.org/10.1016/j.neuroimage.2010.05.048

Baumann O, Belin P (2010) Perceptual scaling of voice identity: common dimensions for different vowels and speakers. Psychol Res 74:110–120. https://doi.org/10.1007/s00426-008-0185-z

Kuhl PK (2004) Early language acquisition: cracking the speech code. Nat Rev Neurosci 5:831–843. https://doi.org/10.1038/nrn1533

Kuhl PK, Stevens E, Hayachi A, Deguchi T, Kiritani S, Iverson P (2006) Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Development Sci 9:F13–F21. https://doi.org/10.1111/j.1467-7687.2006.00468.x.

Zhao TC, Kuhl P (2016) Effects of enriched auditory experience on infants’ speech perception during the first year of life. Prospects 46:235–247. https://doi.org/10.1007/s11125-017-9397-6

Bates E, Thal D, Finlay BL, Clancy B (2002) Early language development and its neural correlates. In: F Boller, J Grafman (Series eds), SJ Segalowitz, I Rapin (Vol eds) Handbook of Neuropsychol. Amsterdam. 8 (Part II):109–176.

DeCasper AJ, Fife, WP (1980) Of human bonding: newborns prefer their mothers’ voice. Science 208:1174–11176. https://doi.org/10.1126/science.7375928

Minagawa-Kawai Y, Mori K, Naoi N, Kojima S (2006) Neural Attunement Processes in Infants during the Acquisition of a Language-Specific Phonemic Contrast. J Neurosci 27(2):315–321. https://doi.org/10.1523/JNEUROSCI.1984-06.2007

Kuhl PK, Conboy BT, Coffey-Corina S, Padden D, Rivera-Gaxiola M, Nelson T (2008) Phonetic learning as a pathway to language: New data and native language magnet theory expanded (NLM-e). Philosoph Transact Royal Society Biol Sci 363(1493):979–1000. https://doi.org/10.1098/rstb.2007.2154

Conboy BT, Kuhl PK (2011) Impact of second-language experience in infancy: Brain measures of first- and second-language speech perception. Development Sci 14(2):242–248. https://doi.org/10.1111/j. 1467-7687.2010.00973.x

Crystal D (2005) The Cambridge Encyclopedia of Language. Cambridge. CUP.

Webb A, Heller H, Benson C, Lahar A (2015) Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc Natl Acad Sci U S A 112:3152–3157. https://doi.org/10.1073/pnas.14149241

DeCasper AJ, Spence MJ (1986). Prenatal maternal speech influences newborns' perception of speech sounds. Infant Behav Development 9(2):133–150. DOI: 10.1126/science.737592

Lam-Cassettari C, Peter V, Antonioua M (2021) Babies detect when the timing is right: Evidence from event-related potentials to a contingent mother-infant conversation. Dev Cogn Neurosci 48:100923. https://doi.org/10.1016/j.dcn.2021.100923

Doheny L, Hurwitz S, Insoft R, Ringer S, Lahav A (2012) Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely preterm infants. J Matern Fetal Neonatal Med 25(9):1591–1594. https://doi.org/10.3109/14767058.2011.648237

Randa K, Lahava A (2014) Maternal sounds elicit lower heart rate in preterm newborns in the first month of life. Early Hum Devel 90(10):679–683. https://doi.org/10.1016/j.earlhumdev.2014.07.016

Chirico G, Cabano R, Villa G, Bigogno A, Ardesi M, Dioni E (2017) Randomised study showed that recorded maternal voices reduced pain in preterm infants undergoing heel lance procedures in a neonatal intensive care unit. Acta Pædiatrica 106(10):1564–1568. https://doi.org/10.1111/apa.13944

Best K, Bogossian F, New K (2018) Language Exposure of Preterm Infants in the Neonatal Unit: A Systematic Review. Neonatology 114:261–276. https://doi.org/10.1159/000489600

Efendi D, Caswini N, Rustina Y, Iskandar ADP (2018) Combination of Mother Therapeutic Touch (MTT) and Maternal Voice Stimulus (MVS) therapies stabilize sleep and physiological function in preterm infants receiving minor invasive procedures. J Neonat Nursing 24(6):318–324. https://doi.org/10.1016/j.jnn.2018.08.001

Evans MK, Deliyski DD (2007) Acoustic voice analysis of prelingually deaf adults before and after cochlear implantation. J Voice 21:669–682. https://doi.org/10.1016/j.jvoice.2006.07.005

Ogorodnikova EA, Koroleva IV, Lublinskaja VV, Pak SP, Stoljarova EI, Baljakova AA (2009) Computer in rehabilitation of patients with cochlear implants. Proc 13-th Int Confer «Speech and Computer–SPECOM’2009». SPb. SPIIRAS:483–486.

Королева ИВ, Огородникова ЕА, Пак СП, Левин СВ, Балякова АА, Шапорова АВ (2013) Методические подходы к оценке динамики развития процессов слухоречевого восприятия у детей с кохлеарными имплантами. Рос оториноларингол 3:75–85 [Koroleva IV, Ogorodnikova EA, Pak SP, Levin SV, Balyakova AA, Shaporova AV (2013) Methodological approaches to assessment of the progress of auditory and speech perception in children with cochlear implants. Ross Otorinolaringol 3: 75–85. (In Russ)].

Beier LO, Pedroso F, Costa-Ferreira MID (2015) Auditory training benefits to the hearing aids users– a systematic review. Rev CEFAC 17(4):1327–1332. https://doi.org/10.1590/1982-0216201517422614

Dettman SJ, Dowell R, Choo D, Arnott W, Abrahams Y, Davis A, Dornan D, Leigh J, Constantinescu G, Cowan R, Briggs RJ (2016) Long-term communication outcomes for children receiving cochlear implants younger than 12 months: a multicenter study. Otol Neurotol 37:e82– e95. https://doi.org/10.1097/MAO.0000000000000915

Hall ML, Hall WC, Caselli NK (2019) Deaf children need language, not (Just) speech. First Language 39(4):367–395. https://doi.org/10.1177/0142723719834102

Wie OB, Torkildsen JK, Schauber S, Busch T, Litovsky R (2020) Long-Term Language Development in Children With Early Simultaneous Bilateral Cochlear Implants. Ear and Hearing 41(5):1294–1305. https://doi.org/10.1097/AUD.0000000000000851

Higgins MB, McCleary EA, Carney AE, Schulte L (2003) Longitudinal changes in children’s speech and voice physiology after cochlear implantation. Ear Hear 24(1):48–70. https://doi.org/10.1097/01.AUD.0000051846.71105.AF

Miller JD, Watson CS, Dubno JR, Leek MR (2015) Evaluation of Speech-Perception Training for Hearing Aid Users: A Multisite Study in Progress. Semin Hear 36(4):273–283. https://doi.org/10.1055/s-0035-1564453

Beyea JA, McMullen KP, Harris MS, Houston DM, Martin JM, Bolster VA, Adunka OF, Moberly AC (2016) Cochlear Implants in Adults: Effects of Age and Duration of Deafness on Speech Recognition. Otology & Neurotology 37(9):1238–1245. https://doi.org/10.1097/MAO.0000000000001162

Koroleva IV, Ogorodnikova EA (2019) Modern achievements in cochlear and brainstem auditory implantation. In: Shelepin Yu, Ogorodnikova E, Solovyev N, Yakimova E (eds:) Neural Networks and Neurotechnologies. SPb. VVM. Chapt 30:231–249.

Kovacić D, Balaban E (2009) Voice gender perception by cochlear implantees. J Acoust Soc Am 126(2):762–775. https://doi.org/10.1121/1.3158855

Horga D, Liker M (2006) Voice and pronunciation of cochlear implant speakers. Clinical linguistics & phonetics 20(2-3):211–217. https://doi.org/10.1080/02699200400027015

Vongpaisal T, Trehub S, Schellenberg EG, Lieshout P (2010) Children With Cochlear Implants Recognize Their Mother's Voice. Ear and Hearing 31(4):555–566. https://doi.org/10.1097/AUD.0b013e3181daae5a

Coelho AC, Brasolotto AG, Bevilacqua MC, Moret ALM, Bahmad JF (2016) Hearing performance and voice acoustics of cochlear implanted children. Braz J Otorhinolaryngol 82:70–75. http://dx.doi.org/10.1016/j.bjorl.2015.11.002

Elman JL (1979) Perceptual origins of the phoneme boundary effect and selective adaptation to speech: A signal detection theory analysis. J Acoust Soc Am 65:190–207. https://doi.org/10.1121/1.382235

Cooper WE (1974) Adaptation of phonetic feature analyzers for place of articulation. J Acoust Soc Am 56:617. https://doi.org/10.1121/1.1903300

Sawusch JR, Jusczyk P (1981) Adaptation and contrast in the perception of voicing J Exp Psychol Hum Percept Perform 7(2):408–421. https://doi.org/10.1037/0096-1523.7.2.408

Sussman JE, Carney AE (1989) Effects of Transition Length on the Perception of Stop Consonants by Children and Adults. J Speech, Language, and Hearing Res 32(1):151–160. https://doi.org/10.1044/jshr.3201.151

Samuel AG, Newport EL (1979) Adaptation of speech by nonspeech: evidence for complex acoustic cue detectors. J Exp Psychol: Hum Percept Perform 5(3):563–578. https://doi.org/10.1037/h0078136

Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the Speech Code. Psychol Rev 74:431–461. https://doi.org/10.1037/h0020279

McClelland J, Elman J (1986) The TRACE Model of Speech Perception. Cognit Psychol 18:1–86. https://doi.org/10.1016/0010-0285(86)90015-0

Goldstone L (1994) Influences of categorization on perceptual discrimination. J Exp Psychol 123:178–200. https://doi.org/10.1037/0096-3445.123.2.178

Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat RevNeurosci 8(5):393–402. https://doi.org/10.1038/nrn2113

Heald SLM, Nusbaum HC (2014) Speech perception as an active cognitive process. Front Systems Neurosci 8:35. https://doi.org/10.3389/fnsys.2014.00035

Wilder RJ (2018) Investigating Hybrid Models Of Speech Perception. Publ Accessible Penn Dissertat:3202. https:/ /repository.upenn.edu/edissertations/3202

Ding N, Simon JZ (2013) Adaptive temporal encoding leads to a background insensitive cortical representation of speech. J Neurosci 33:5728–5735. https://doi.org/10.1523/JNEUROSCI.5297-12.2013

Kell AJ, McDermott J (2017) Robustness to real-world background noise increases between primary and non-primary human auditory cortex. J Acoust Soc Am 141:3896. https://doi.org/10.1121/1.4988749

Khalighinejad B, Herrero JL, Mehta AD, Mesgarani N (2019) Adaptation of the human auditory cortex to changing background noise. J Nature Communicat 10:2509. https://doi.org/10.1038/s41467-019-10611-4

Chait M, Poeppel D, Simon JZ (2005) Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cereb Cortex 16:835–848. https://doi.org/10.1093/cercor/bhj027

Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 31:3805–3812. https://doi.org/10.1523/JNEUROSCI.5561-10.2011

Oxenham AJ (2001) Forward masking: Adaptation or integration? J Acoust Soc Am 109:732–741. https://doi.org/10.1121/1.1336501

Jesteadt W, Bacon SP, Lehman JR (1982) Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 71:950–962. https://doi.org/10.1121/1.387576

Malmierca MS, Sanchez-Vives MV, Escera C, Bendixen A (2014) Neuronal adaptation, novelty detection and regularity encoding in audition. Front Syst Neurosci 8. https://doi: 10.3389/fnsys.2014.00111

Sumner CJ, Palmer AR (2012) Auditory nerve fibre responses in the ferret. Eur J Neurosci 36(4):2428–2439. https://doi.org/10.1111/j.1460-9568.2012.08151.x

Blank H, Anwander A, von Kriegstein K (2011) Direct structural connections between voice-and face-recognition areas. J Neurosci 31(36):12906–12915. https://doi.org/10.1523/JNEUROSCI.2091-11.2011

Von Kriegstein K, Giraud AL (2006) Implicit multisensory associations influence voice recognition. PLoS Biology 4(10): e326. https://doi.org/10.1371/journal.pbio.0040326