Abstract
In three Far Eastern male forest cats (Prionailurus bengalensis euptilura) and four male domestic cats (Felis catus) with preimplanted (under general anesthesia) loggers, deep subcutaneous back temperature and motor activity were recorded in captive conditions for two months in the fall-winter period. It was found that in fall, at positive daytime temperatures, the circadian rhythm of body temperature is absent in Far Eastern forest cats and weakly expressed in domestic cats. However, it reappears during the period of winter cold in the form of fluctuations synchronous in all animals, with an amplitude of 3–4°C and acrophase in the middle of the daylight period and a minimum in the middle of the night. For comparison, the recording of the “core” body temperature and activity in two female domestic cats kept in the same season in the laboratory revealed no comparable rhythms. It is concluded that the circadian biorhythms of rest−activity and deep subcutaneous temperature are not constant characteristics of the body of Far Eastern forest and domestic cats, but can appear, disappear and change radically with changes in ambient temperature.
References
Павлова ЕВ, Найденко СВ (2008) Неинвазивный мониторинг глюкокортикоидов в экскрементах дальневосточного лесного кота (Prionailurus bengalensis euptilurus). Зоол журн 87(11):1375–1381. [Pavlova EV, Naidenko SV (2008) Noninvasive monitoring of glucocorticoids in feces of the Bengal cat (Prionailurus bengalensis euptilurus). Zool J 87(11):1375–1381. (In Russ)].
Antonevich AL, Alekseeva GS, Vasilieva NA, Pavlova EV, Loshchagina JA., Duplyakina SYu, Naidenko SV (2019) Social play changes reflect differences in biology and development of three felids. Rus J Theriol 18(2):80–90. https://doi.org/10.15298/rusjtheriol.18.2.02
Seryodkin IV, Burkovskiy OA (2019) Food habit analysis of the Amur leopard cat Prionailurus bengalensis euptilurus in the Russian Far East. Biol Bull 46(6):648–653. https://doi.org/10.1134/S1062359019660038
Naidenko S, Chistopolova M, Hernandez-Blanco JA, Erofeeva M, Rozhnov V (2021) The effect of highway on spatial distribution and daily activity of mammals. Transp Res Part D 94:102808. https://doi.org/10.1016/j.trd.2021.102808
Hawking F, Lobban MC, Gammage K, Worms MJ (1971) Circadian rhythms (activity, temperature, urine and microfilariae) in dog, cat, hen, duck, thamnomys and gerbillus. J Interdisсipl Cycle Res 2(4):455–473. https://dx.doi.org/10.1080/09291017109359289
Kuwabara N, Seki K, Aoki K (1986) Circadian, sleep and brain temperature rhythms in cats under sustained daily light-dark cycles and constant darkness. Physiol Behav 38(2):283–289.
Randall W, Cunningham JT, Randall S, Liittschwager J, Johnson RF (1987) A two-peak circadian system in body temperature and activity in the domestic cat, Felis catus. J Therm Biol 12(1):27–37.
Jouvet M (2016) Le sommeil, la conscience et l’éveil. Paris, Odile Jacob. [Рус. пер.: Жуве М (2021) Наука о сне. Кто познает тайну сна — познает тайну мозга! М. АСТ].
Петровский ДВ, Ромащенко АВ, Троицкий СЮ, Мошкин МП (2015) Межлинейные различия мышей по температурной реакции на интраназальное введение наночастиц оксида платины. Вавиловск журн ген сел 19(4):439–444. [Petrovskii DV, Romashchenko AV, Troitskii SYu, Moshkin MP (2015) Between-strain differences in hypothermic response in mice after intranasal administration of Pto nanoparticles. Vavilovsk Zhurn Genetiki Selektsii – Vavilov J Gen Breed 19(4):439–444. (In Russ)]. https://doi.org/10.18699/VJ15.058
Fuchs B, Sørheim KM, Chincarini M, Brunberg E, Stubsjøen SM, Bratbergsengen K, Hvasshovd SO, Zimmermann B, Lande US, Grøva L (2019) Heart rate sensor validation and seasonal and diurnal variation of body temperature and heart rate in domestic sheep. Vet Anim Sci 8:100075. https://doi.org/10.1016/j.vas.2019.100075
Giannetto C, Aragona F, Arfuso F, Piccione G, De Caro S, Fazio F (2022) Diurnal variation in rectal and cutaneous temperatures of horses housed under different management conditions. Int J Biometeor 66(8):1601–1611. https://doi.org/10.1007/s00484-022-02304-3
Dzenda T, Ayo JO, Lakpini CAM, Adelaiye AB (2011) Diurnal, seasonal and sex variations in rectal temperature of African giant rats (Cricetomys gambianus, Waterhouse). J Therm Biol 36:255–263. https://doi.org/10.1016/j.jtherbio.2011.03.010
Thiel1 A, Evans AL, Fuchs B, Arnemo JM, Aronsson M, Persson J (2019) Effects of reproduction and environmental factors on body temperature and activity patterns of wolverines. Front Zool 16:21. https://doi.org/10.1186/s12983-019-0319-8
Davimes JG, Alagaili AN, Bhagwandin A, Bertelsen MF, Mohammed OB, Bennett NC, Manger PR, Gravett N (2018) Seasonal variations in sleep of free-ranging Arabian oryx (Oryx leucoryx) under natural hyperarid conditions. Sleep 41:5. https://doi.org/10.1093/sleep/zsy038
Kovalzon VM, Averina OA, Minkov VA, Petrin AA, Vysokikh MYu (2020) Unusual correlation between rest–activity and body temperature rhythms in the naked mole rat (Heterocephalus glaber) as compared to five other mammalian species. J Evol Biochem Physiol 56(5):451–458. http://doi.org/10.1134/S0022093020050087
Пастухов ЮФ, Максимов АЛ, Хаскин ВВ (2003) Адаптация к холоду и условиям субарктики: проблемы термофизиологии, Т. 1. Магадан. МНИЦ «Арктика». [Pastukhov YuF., Maksimov AL, Haskin VV (2003) Adaptation to cold and subarctic conditions: the problems of thermophysiology, V. 1. Magadan. ISRC "Arktika". (In Russ)].
Mohr SM, Bagriantsev SN, Gracheva EO (2020) Cellular, molecular, and physiological adaptations of hibernation: The solution to environmental challenges. Annu Rev Cell Dev Biol 36: 13.1–13.24. https://doi.org/10.1146/annurev-cellbio-012820-09594
Frare C, Williams CT, Drew KL (2021) Thermoregulation in hibernating mammals: The role of the “thyroid hormones system”. Mol Cell Endocrinol 519:111054. https://doi.org/10.1016/j.mce.2020.111054
Junkins MS, Bagriantsev SN, Gracheva EO (2022) Towards understanding the neural origins of hibernation. J Exp Biol 225(1):jeb229542. https://doi.org/10.1242/jeb.229542