СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОСОБЕННОСТЕЙ РАСПРЕДЕЛЕНИЯ РАЗЛИЧНЫХ ФОТОСЕНСИБИЛИЗАТОРОВ В КЛЕТКАХ PARAMECIUM CAUDATUM И AMOEBA PROTEUS
PDF

Ключевые слова

протисты
фотосенсибилизатор
инфузории
амебы
фотодинамическая терапия
флуоресцентная микроскопия
конфокальная сканирующая лазерная микроскопия

Аннотация

Исследованы особенности распределения различных фотосенсибилизаторов (ФС) (радахлорина, бенгальского розового и копропорфирина) в клетках инфузорий Paramecium caudatum и лобозных амеб Amoeba proteus. Характер аккумуляции фотосенсибилизаторов оценивали по результатам как прижизненных наблюдений, так и на фиксированном материале, с использованием методов флуоресцентной и конфокальной сканирующей лазерной микроскопии. Показано, что исследованные одноклеточные эукариотные организмы имеют сходное с млекопитающими внутриклеточное распределение ФС и могут быть использованы в качестве модельных объектов на первых этапах доклинических исследований веществ – потенциальных ФС. Предложены некоторые методические рекомендации по выявлению клеточных компартментов, в которых происходит избирательное накопление ФС.

https://doi.org/10.31857/S004445292206002X
PDF

Литература

Carrasco-Pujante J, Bringas C, Malaina I, Fedetz M, Martínez L, Pérez-Yarza G, Dolores Boyano M, Berdieva M, Goodkov A, López JI, Knafo S, De la Fuente IM (2021) Associative Conditioning Is a Robust Systemic Behavior in Unicellular Organisms: An Interspecies Comparison. Front Microbiol 12:707086. https://doi.org/10.3389/fmicb.2021.707086

Petrishchev NN, Papayan G V., Chistyakova L V., Struy A V., Faizullina DR (2018) Effect of Photobiomodulation by Red and Infrared Laser Radiation on Motility of Paramecium caudatum. J Evol Biochem Physiol 54:457–464. https://doi.org/10.1134/s0022093018060054

Herman P, Kiss A, Fábián I, Kalmár J, Nagy G (2021) In situ remediation efficacy of hybrid aerogel adsorbent in model aquatic culture of Paramecium caudatum exposed to Hg(II). Chemosphere 275:130019. https://doi.org/10.1016/j.chemosphere.2021.130019

Benov L (2015) Photodynamic therapy: current status and future directions Med Princ Pract 24: 14-28. http://dx.doi.org/10.1159%2F000362416

Nonell S, Flors C (2016) Singlet oxygen : applications in biosciences and nanosciences. Royal Society of Chemistry, Cambridge, England

Ogilby PR (2010) Singlet oxygen: There is indeed something new under the sun. Chem Soc Rev 39:3181–3209. https://doi.org/10.1039/b926014p

Sztandera K, Gorzkiewicz M, Wang X, Boye S, Appelhans D, Klajnert- Maculewicz B (2022) pH-stable polymersome as nanocarrier for post-loaded rose bengal in photodynamic therapy. Colloids and Surfaces B: Biointerfaces 217: 112662 https://doi.org/10.1016/j.colsurfb.2022.112662

Krechetov SP, Miroshkina AM, Yakovtseva MN, Mochalova EN, Babenyshev AV, Maslov IV, Loshkarev AA, Krasnyuk II (2021) Radachlorin-Containing Microparticles for Photodynamic Therapy. Adv Pharm Bull 11:458–468. https://doi.org/10.34172/apb.2021.053

Sonneborn TM (1970) Methods in paramecium research. In Methods of Cell Physiology. AcademicPress Inc., New York 4:241–339.

Prescott DM, Carrier R (1964). Experimental procedures and cultural methods for Euplotes eurystomus and Amoeba proteus. In Methods in cell biology New York, London, Acad. Press. 1:85-95.

Mirzaei H, Djavid GE, Hadizadeh M, Jahanshiri-Moghadam M, Hajian P (2015) The efficacy of Radachlorin-mediated photodynamic therapy in human hepatocellular carcinoma cells. J Photochem Photobiol B Biol 142:86–91. https://doi.org/10.1016/j.jphotobiol.2014.11.007

Vargas F, Díaz Y, Yartsev V, Marcano A, Lappa A (2004) Photophysical properties of novel PDT photosensitizer Radachlorin in different media Propiedades fotofísicas del nuevo fotosensibilizador Radaclorin en diferentes medios. Sci J from Exp Fac Sci 12:70–77.

Bagrov IV, Belousova IM, Gorelov SI, Dobrun MV, Kiselev VM, Kislyakov IM, Kris’ko AV, Kris’ko TK (2017) A comparative study of the processes of generation of singlet oxygen upon irradiation of aqueous preparations on the basis of chlorin e6 and coproporphyrin III. Opt Spectrosc 122:163–167. https://doi.org/10.1134/S0030400X17020060

Murav’eva TD, Dadeko AV, Kiselev VM, Kris’ko TK, Kislyakov IM, Kris’ko AV, Starodubtsev AM, Bagrov IV, Belousova IM, Ponomarev G V (2018) Comparative study of the photophysical properties of low-toxicity photosensitizers based on endogenous porphyrins. J Opt Technol 85:709–721. https://doi.org/10.1364/JOT.85.000709

Redmond RW, Gamlin JN (1999) A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules. Photochem Photobiol 70:391–475.

Chang CC, Yang YT, Yang JC, Wu H Da, Tsai T (2008) Absorption and emission spectral shifts of rose bengal associated with DMPC liposomes. Dye Pigment 79:170–175. https://doi.org/10.1016/j.dyepig.2008.02.003

Panzarini E, Inguscio V, Dini L (2011) Overview of cell death mechanisms induced by rose bengal acetate-photodynamic therapy. Int J Photoenergy 2011:11. https://doi.org/10.1155/2011/713726

Файзуллина ДР, Сухорукова ЕГ, Юкина ГЮ, Петрищев НН, Корнева ЕА (2020) Изменения микроциркуляции и структурных компонентов кожи при фотодинамическом воздействии. Регионарное кровообращение и микроциркуляция 19(1):73–81. [Faizullina DR, Sukhorukova EG, Yukina GYu, Petrishchev NN, Korneva EA. (2020) Changes in microcirculation and structural components of the skin under photodynamic effects. Regional blood circulation and microcirculation 19(1):73–81. (In Russ)] . https://doi.org/10.24884/1682-6655-2020-19-1-73-81

Гришачева ТГ, Белик АГ, Цыганенко ВН, Струй АВ, Михайлова ИА, Петрищев НН (2018) Фотореактивность сосудов микроциркуляторного русла. Рос физиол журн им ИМ Сеченова. 104(2):174–183. [Grishacheva TG, Belik AG, Tsyganenko VN, Struy AV, Mikhailova IA, Petrishchev NN (2018) Photoreactivity of mesenteric microvessels. Russian journal of physiology 104(2):174–183.]

Wachter E, Dees C, Harkins J, Fisher W, Scott T (2002) Functional Imaging of Photosensitizers using Multiphoton Microscopy. In: Multiphoton Microscopy in the Biomedical Sciences II 4620:143-147. https://doi.org/10.1117/12.470688

Theodossiou T, Hothersall JS, Woods EA, Okkenhaug K, Jacobson J, MacRobert AJ (2003). Firefly luciferin-activated rose bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells. Cancer research 63(8): 1818–1821.

Panzarini E, Tenuzzo B, Palazzo F, Chionna A, Dini L (2006) Apoptosis induction and mitochondria alteration in human HeLa tumour cells by photoproducts of Rose Bengal acetate. J Photochem Photobiol B Biol 83:39–47. https://doi.org/10.1016/j.jphotobiol.2005.11.014

Biswas R, Moon JH, Ahn JC (2014) Chlorin e6 derivative radachlorin mainly accumulates in mitochondria, lysosome and endoplasmic reticulum and shows high affinity toward tumors in nude mice in photodynamic therapy. Photochem Photobiol 90:1108–1118. https://doi.org/10.1111/php.12273

Zhikhoreva AA, Belashov AV, Belyaeva TN, Salova AV, Litvinov IK, Semenova LV, Vasyutinskii OS (2022) Comparative analysis of radachlorin accumulation, localization and photobleaching in three cell lines by means of holographic and fluorescent microscopy Photodiagnosis and photodynamic therapy 39: 102973. https://doi.org/10.1016/j.pdpdt.2022.102973

Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S (2015) The protozoan, Paramecium primaurelia, as a non-sentient model to test laser light irradiation: the effects of an 808nm infrared laser diode on cellular respiration. Alternatives to Laboratory Animals 43(3): 155–162. https://doi.org/10.1177/026119291504300305

Croce AC, Wyroba E, Bottiroli G (1992) Distribution and retention of rose bengal and disulphonated aluminium phthalocyanine: a comparative study in unicellular eukaryote. Journal of Photochemistry and Photobiology 16(3-4): 318–330. https://doi.org/10.1016/1011-1344(92)80019-R