ВЛИЯНИЕ ДОНОРА ОКСИДА АЗОТА S-НИТРОЗОГЛУТАТИОНА НА ЭКСПРЕССИЮ КОНСТИТУТИВНОГО АНДРОСТАНОВОГО РЕЦЕПТОРА
PDF

Ключевые слова

конститутивный андростановый рецептор
нитрозативный стресс
оксид азота
битирозин
гуанилатциклаза

Аннотация

Настоящая работа посвящена изучению механизмов регуляции конститутивного андростанового рецептора (CAR) при воздействии донора оксида азота (NO) S-нитрозоглутатиона (GSNO) in vitro. Исследование выполнено на клетках линии Сасо-2, которые инкубировали в питательной среде в присутствии S-нитрозоглутатиона (диапазон концентраций 1 - 500 мкМ) в течение 3, 24 и 72 ч. Относительное количество CAR оценивали методом вестерн-блот. В работе показано, что кратковременное воздействие донора NO GSNO в течение 3 и 24 ч в концентрациях 1 - 500 мкМ не влияло на количество CAR, а при экспозиции 72 ч с GSNO в концентрациях 1, 10 и 50 мкМ отмечалось его увеличение. Доказано, что повышение относительного количества CAR при воздействии низких концентраций GSNO (1 мкМ) реализуется через NO-цГМФ-сигнальный путь. При увеличении концентрации GSNO до 10 и 50 мкМ отмечается развитие нитрозативного стресса и регуляция CAR осуществляется через битирозин. Прогрессирование нитрозативного стресса (концентрация GSNO 100 и 500 мкМ) приводит к снижению относительного количества CAR, предположительно, вследствие повреждения его молекулы.

https://doi.org/10.31857/S0044452922050023
PDF

Литература

Kachaylo EM, Pustylnyak VO, Lyakhovich VV, Gulyaeva LF (2011) Constitutive androstane receptor (CAR) is a xenosensor and target for therapy. Biochemistry (Mosc) 76(10):1087–1097. https://doi.org/10.1134/S0006297911100026

Qatanani M, Moore DD (2005) CAR, the continuously advancing receptor, in drug metabolism and disease. Current Drug Metabolism 6(4):329–339. https://doi.org/10.2174/1389200054633899

Timsit YE, Negishi M (2007) CAR and PXR: the xenobiotic-sensing receptors. Steroids 72:231–246. https://doi.org/10.1016/j.steroids.2006.12.006

Nishimura M, Naito S, Yokoi T (2004) Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab Pharmacokinet 19(2):135–149. https://doi.org/10.2133/dmpk.19.135

Timsit YE, Negishi M (2014) Coordinated regulation of nuclear receptor CAR by CCRP/DNAJC7, HSP70 and the ubiquitin-proteasome system. PLoS One 9(5):e96092. https://doi.org/10.1371/journal.pone.0096092

Kakizaki S, Yamamoto Y, Ueda A, Moore R, Sueyoshi T, Negishi M (2003) Phenobarbital induction of drug/steroid-metabolizing enzymes and nuclear receptor CAR. Biochim Biophys Acta 1619(3):239–242. https://doi.org/10.1016/s0304-4165(02)00482-8

He L, Wu J, Tang W, Zhou X, Lin Q, Luo F, Yin Y, Li T (2018) Prevention of oxidative stress by α-ketoglutarate via activation of car signaling and modulation of the expression of key antioxidant-associated targets in vivo and in vitro. J Agric Food Chem 66(43):11273–11283. https://doi.org/10.1021/acs.jafc.8b04470

Yang H, Wang H (2014) Signaling control of the constitutive androstane receptor (CAR). Protein Cell 5(2):113–123. https://doi.org/10.1007/s13238-013-0013-0

Lynch C, Pan Y, Li L, Heyward S, Moeller T, Swaan PW, Wang H (2014) Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes. Toxicol Appl Pharmacol 279(1):33–42. https://doi.org/10.1016/j.taap.2014.05.009

Abalenikhina YV, Kosmachevskaya OV, Topunov AF (2020) Peroxynitrite: toxic agent and signaling molecule (review). Appl Biochem Microbiol 56:611–623. https://doi.org/10.1134/S0003683820060022

Araki S, Osuka K, Takata T, Tsuchiya Y, Watanabe Y (2020) Coordination between calcium/calmodulin-dependent protein kinase II and neuronal nitric oxide synthase in neurons. Int J Mol Sci 21:7997. https://doi.org/10.3390/ijms21217997

Browning DD, McShane MP, Marty C, Ye RD (2000) Nitric oxide activation of p38 mitogen-activated protein kinase in 293T fibroblasts requires cGMP-dependent protein kinase. J Biol Chem 275(4):2811–2816. https://doi.org/ 10.1074/jbc.275.4.2811

Bladowski M, Gawrys J, Gajecki D, Szahidewicz-Krupska E, Sawicz-Bladowska A, Doroszko A (2020) Role of the platelets and nitric oxide biotransformation in ischemic stroke: a translative review from bench to bedside. Oxid Med Cell Longev 28:2979260. https://doi.org/ 10.1155/2020/2979260

Saini R, Azam Z, Sapra L, Srivastava RK (2021) Neuronal nitric oxide synthase (nNOS) in neutrophils: an insight. Rev Physiol Biochem Pharmacol 180:49–83. https://doi.org/ 10.1007/112_2021_61

Zweier JL, Ilangovan G (2020) Regulation of nitric oxide metabolism and vascular tone by cytoglobin. Antioxid Redox Signal 32(16):1172–1187. https://doi.org/ 10.1089/ars.2019.7881

Antosova M, Mokra D, Pepucha L, Plevkova J, Buday T, Sterusky M, Bencova A (2017) Physiology of nitric oxide in the respiratory system. Physiol Res 66 (Suppl 2):159–172. https://doi.org/ 10.33549/physiolres.933673

Sanders KM, Ward SM (2019) Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract. Br J Pharmacol 176(2):212–227. https://doi.org/ 10.1111/bph.14459

Ahmad A, Dempsey SK, Daneva Z, Azam M, Li N, Li PL, Ritter JK (2018) Role of nitric oxide in the cardiovascular and renal systems. Int J Mol Sci 19(9):2605. https://doi.org/10.3390/ijms19092605

Garthwaite J (2019) NO as a multimodal transmitter in the brain: discovery and current status. Br J Pharmacol 176(2):197–211. https://doi.org/10.1111/bph.14532

Mazurek M, Rola R (2021) The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 150: 105172. https://doi.org/ 10.1016/j.neuint.2021.105172

Lancaster JR (2015) Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications. Future Sci OA 1(1): FSO59. https://doi.org/10.4155/fso.15.59

Гуманова НГ (2021) Оксид азота и его циркулирующие метаболиты NOх, их роль в функционировании человеческого организма при прогнозе риска сердечно-сосудистой смерти (Часть II). Профилакт мед 24(10):119-125. [Gumanova NG (2021) Nitrogen oxide and its circulating NOх metabolites, their role in human body functioning and cardiovascular death risk prediction (Part II). Russ J Preventiv Med 24(10):199–125. (In Russ)]. https://doi.org/10.17116/profmed202124101119

Koseki K, Yamamoto A, Tanimoto K, Okamoto N, Teng F, Bito T, Yabuta Y, Kawano T, Watanabe F (2021) Dityrosine crosslinking of collagen and amyloid-β peptides is formed by vitamin B12 deficiency-generated oxidative stress in Caenorhabditis elegans. Int J Mol Sci 22(23): 12959. https:/doi.org/ 10.3390/ijms222312959

Li AP (2020) In vitro human cell-based experimental models for the evaluation of enteric metabolism and drug interaction potential of drugs and natural products. Drug Metab Dispos 48(10):980–992. https://doi.org/10.1124/dmd.120.000053

Hwang TL, Wu CC, Teng CM (1998) Comparison of two soluble guanylyl cyclase inhibitors, methylene blue and ODQ, on sodium nitroprusside-induced relaxation in guinea-pig trachea. Br J Pharmacol 125(6):1158–1163. https://doi.org/10.1038/sj.bjp.0702181

Метельская ВА, Гуманова НГ (2005) Скрининг — метод определения уровня метаболитов оксида азота сыворотке человека. Клин лаб диагност 6: 15–18. [Metelskaya VA, Gumanova NG (2005) Screening method for determining the level of nitric oxide metabolites in human serum. Clin Lab Diagnost 6: 15–18. (In Russ)].

Лобышева ИИ, Сереженков ВА, Ванин АФ (1999) Взаимодействие динитрозильных тиолсодержащих комплексов железа с пероксинитритом и перекисью водорода in vitro. Биохимия 64(2):194–200. [Lobysheva II, Serezhenkov VA, Vanin AF (1999) Interaction of dinitrosyl thiol-containing iron complexes with peroxynitrite and hydrogen peroxide in vitro. Biochemistry 64(2):194–200. (In Russ)].

Amado R, Aeschbach R, Neukom H (1984) Dytirosine: in vitro production and characterization. Methods Enzymol 107: 377–388. https://doi.org/10.1016/0076-6879(84)07026-9

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Tolosa L, Donato MT, Gómez-Lechón MJ (2015) General cytotoxicity assessment by means of the MTT assay. Methods Mol Biol 1250: 333–348. https://doi.org/10.1007/978-1-4939-2074-7_26

Абаленихина ЮВ, Судакова ЕА, Сеидкулиева АА, Щулькин АВ, Якушева ЕН (2021) Функционирование прегнан Х рецептора в условиях нитрозативного стресса. Биомед химия 67(5):394–401. [Abalenikhina YV, Sudakova EA, Seidkulieva AA, Shchulkin AV, Yakusheva EN (2021) Functioning of pregnan X receptor under conditions of nitrosative stress. Biomed Khim 67(5):394–401. (In Russ)]. https://doi.org/: 10.18097/PBMC20216705394

Rizza S, Giglio P, Faienza F, Filomeni G (2019) Therapeutic application of nitric oxide in cancer and inflammatory disorders. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816545-4.00009-8

Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B (2001) Mechanism of transfer of NO from extracellular S-nitrosothiols into the cytosol by cell-surface protein disulfide isomerase. Proc Natl Acad Sci U S A 98(17): 9539–9544. https://doi.org/10.1073/pnas.171180998

Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B (2001) Mechanism of transfer of NO from extracellular S-nitrosothiols into the cytosol by cell-surface protein disulfide isomerase. Proc Natl Acad Sci U S A 98:9539-9544. https://doi.org/10.1073/pnas.171180998

Zhang Y, Sun C, Xiao G, Shan H, Tang L, Yi Y, Yu W, Gu Y (2019). S-nitrosylation of the Peroxiredoxin-2 promotes S-nitrosoglutathione-mediated lung cancer cells apoptosis via AMPK-SIRT1 pathway. Cell Death Dis 10(5): 329. https://doi.org/10.1038/s41419-019-1561-x

Kim J, Islam SMT, Qiao F, Singh AK, Khan M, Won J, Singh I (2021) Regulation of B cell functions by S-nitrosoglutathione in the EAE model. Redox Biol 45: 102053. https://doi.org/10.1016/j.redox.2021.102053

Mussbacher M, Stessel H, Pirker T, Gorren ACF, Mayer B, Schrammel A (2019) S-nitrosoglutathione inhibits adipogenesis in 3T3-L1 preadipocytes by S-nitrosation of CCAAT/enhancer-binding protein β. Sci Rep 9(1): 15403. https://doi.org/10.1038/s41598-019-51579-x

Chen T, Chen Q, Xu Y, Zhou Q, Zhu J, Zhang H, Wu Q, Xu J, Yu C (2011) SRC-3 is required for CAR-regulated hepatocyte proliferation and drug metabolism. J Hepatol 56(1): 210–217. https://doi.org/10.1016/j.jhep.2011.07.015

Suino K, Peng L, Reynolds R, Li Y, Cha JY, Repa JJ, Kliewer SA, Xu HE (2004) The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. Mol Cell 16(6):893–905. https://doi.org/10.1016/j.molcel.2004.11.036

Yoshinari K, Kobayashi K, Moore R, Kawamoto T, Negishi M (2003) Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Letters 548(1-3):17–20. https://doi.org/10.1016/s0014-5793(03)00720-8

Kanno Y, Miyama Y, Ando M, Inouye Y (2010) Dependence on the microtubule network and 90-kDa heat shock protein of phenobarbital-induced nuclear translocation of the rat constitutive androstane receptor. Mol Pharmacol 77(2):311–316. https://doi.org/10.1124/mol.109.060434

Chen T, Laurenzana EM, Coslo DM, Chen F, Omiecinski CJ (2014) Proteasomal interaction as a critical activity modulator of the human constitutive androstane receptor. Biochem J 458(1):95–107. https://doi.org/10.1042/BJ20130685K

Scopino K, Dalgarno C, Nachmanoff C, Krizanc D, Thayer KM, Weir MP (2021) Arginine methylation regulates ribosome CAR function. Int J Mol Sci 22(3):1335. https://doi.org/10.3390/ijms22031335

Tejero J, Shiva S, Gladwin MT (2019) Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev 99(1):311–379. https://doi.org/10.1152/physrev.00036.2017

Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R (2018) Biochemistry of peroxynitrite and protein tyrosine nitration. Chem Rev 118(3):1338–1408. https://doi.org/10.1021/acs.chemrev.7b0056846

Boer TR, Palomino RI, Mascharak PK (2019) Peroxynitrite-mediated dimerization of 3-nitrotyrosine: unique chemistry along the spectrum of peroxynitrite-mediated nitration of tyrosine. Med One 4: e190003. https://doi.org/10.20900/mo.20190003

Koseki K, Yamamoto A, Tanimoto K, Okamoto N, Teng F, Bito T, Yabuta Y, Kawano T, Watanabe F (2021) Dityrosine crosslinking of collagen and amyloid-β peptides is formed by vitamin B12 deficiency-generated oxidative stress in Caenorhabditis elegans. Int J Mol Sci 22(23):12959. https://doi.org/10.3390/ijms222312959

Lu Y, Ma S, Tang X, Li B, Ge Y, Zhang K, Yang S, Zhao Q, Xu Y, Ren H. (2020) Dietary Dityrosine Induces Mitochondrial Dysfunction by Diminished Thyroid Hormone Function in Mouse Myocardia. J Agric Food Chem 68(34):9223–9234. https://doi.org/ 10.1021/acs.jafc.0c03926

Mathäs M, Nusshag C, Burk O, Gödtel-Armbrust U, Herlyn H, Wojnowski L, Windshügel B (2014) Structural and functional similarity of amphibian constitutive androstane receptor with mammalian pregnane X receptor. PloS One 9(5):e96263. https://doi.org/10.1371/journal.pone.0096263