НАРУШЕНИЕ СТИМУЛ-СПЕЦИФИЧЕСКОЙ АДАПТАЦИИ У МЫШЕЙ, НОКАУТНЫХ ПО ГЕНУ РЕЦЕПТОРА СЛЕДОВЫХ АМИНОВ 1-ГО ТИПА (TAAR1)
PDF

Ключевые слова

рецепторы следовых аминов
TAAR1
негативность рассогласования (НР)
стимул-специфическая адаптация
слуховые вызванные потенциалы (ВП)
парадигма «одд-болл»

Аннотация

Многочисленные исследования подтверждают, что рецепторы следовых аминов 1-го типа (TAAR1) выступают в качестве нейромодулятора моноаминергических систем, обеспечивающего отрицательную регуляцию активности дофаминергических и серотонинергических нейронов. Способность TAAR1 регулировать моноаминергические системы обуславливает его заметную роль в возникновении психических и неврологических расстройств. Настоящее исследование направлено на то, чтобы представить дополнительные доказательства роли TAAR1 в генерации негативности рассогласования (НР) на модели грызунов. Регистрация электроэнцефалограммы в свободном поведении проводилась у мышей, нокаутных по гену, кодирующему TAAR1, и мышей дикого типа. Известно, что НР отражает комбинацию реакции стимул-специфической адаптации к повторяющемуся стимулу (ССА) и механизма обнаружения отклонения. Для того, чтобы разграничить эти два процесса, мы сравнили стандартные и девиантные стимулы, зарегистрированные в парадигме "одд-болл", с контрольными стимулами, зарегистрированными в парадигме мультистандартного контроля. Различие, наблюдаемое между высокоадаптированными стандартными и низкоадаптированными контрольными стимулами, вместе со сходной реакцией на девиантные и контрольные стимулы позволяет предположить, что НР-подобный ответ у мышей дикого типа, скорее всего, отражает процесс ССА. С другой стороны, мыши нокаутные по гену, кодирующему TAAR1, не обнаруживают различий между стандартными, девиантными и контрольными стимулами. Можно предположить, что полученный результат указывает на нарушение процесса ССА на повторяющиеся стимулы у мышей линии TAAR-KO.

https://doi.org/10.31857/S0044452922030044
PDF

Литература

Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci 98:8966–8971. https://doi.org/10.1073/pnas.151105198

Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60:1181–1188. https://doi.org/10.1124/mol.60.6.1181

Lindemann L, Meyer C, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein J, Borroni E, Moreau J, Hoener M (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 324:948–956. https://doi.org/10.1124/jpet.107.132647

Di Cara B, Maggio R, Aloisi G, Rivet JM, Lundius EG, Yoshitake T, Svenningsson P, Brocco M, Gobert A, de Groote L, Cistarelli L, Veiga S, de Montrion CD, Rodriguez M, Galizzi JP, Lockhart BP, Cogé F, Boutin JA, Vayer P, Verdouw PM, Groenink L, Millan MJ (2011) Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA). J Neurosci 31:16928–16940. https://doi.org/10.1523/JNEUROSCI.2502-11.2011

Espinoza S, Lignani G, Caffino L, Maggi S, Sukhanov I, Leo D, Mus L, Emanuele M, Ronzitti G, Harmeier A, Medrihan L, Sotnikova TD, Chieregatti E, Hoener MC, Benfenati F, Tucci V, Fumagalli F, Gainetdinov RR (2015) TAAR1 modulates cortical glutamate NMDA receptor function. Neuropsychopharmacology 40:2217–2227. https://doi.org/10.1038/npp.2015.65

Pei Y, Asif-Malik A, Canales JJ (2016) Trace amines and the trace amine-associated receptor 1: Pharmacology, neurochemistry, and clinical implications. Front Neurosci 10:148. https://doi.org/10.3389/fnins.2016.00148

Berry MD, Gainetdinov RR, Hoener MC, Shahid M (2017) Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 180:161–180. https://doi.org/10.1016/j.pharmthera.2017.07.002

John J, Kukshal P, Bhatia T, Chowdari KV, Nimgaonkar VL, Deshpande SN, Thelma BK (2017) Possible role of rare variants in trace amine associated receptor 1 in schizophrenia. Schizophr Res 189:190–195. https://doi.org/10.1016/j.schres.2017.02.020

Dodd S, F. Carvalho A, Puri BK, Maes M, Bortolasci CC, Morris G, Berk M (2021) Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci Biobehav Rev 120:537–541. https://doi.org/10.1016/j.neubiorev.2020.09.028

Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P, Branchek T, Gerald CP (2007) The Trace Amine 1 receptor knockout mouse: An animal model with relevance to schizophrenia. Genes Brain Behav 6:628–639. https://doi.org/10.1111/j.1601-183X.2006.00292.x

Полякова НВ, Виноградова ЕП, Алексаендров АА, Гайнетдинов РР (2018) Преимпульсное торможение у мышей-нокаутов по TAAR1 рецептору. Рос физиол журн им ИМ Сеченова 104 (9):1098-1105. [Polyakova NV, Vinogradova EP, Aleksandrov AA, Gainetdinov RR (2018) Prepulse inhibition in the TAAR1 knockout mice. Russ J Physiol 104 (9):1098–1105. (In Russ)]. https://doi.org/10.1016/j.brainres.2011.04.010

Light GA, Swerdlow NR (2015) Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann NY Acad Sci 1344:105–119. https://doi.org/10.1111/nyas.12730

Aleksandrov AA, Dmitrieva ES, Volnova AB, Knyazeva VM, Gainetdinov RR, Polyakova NV (2019) Effect of trace amine-associated receptor 1 agonist RO5263397 on sensory gating in mice. Neuroreport 30:1004–1007. https://doi.org/10.1097/wnr.0000000000001313

Aleksandrov AA, Knyazeva VM, Volnova AB, Dmitrieva ES, Polyakova NV, Gainetdinov RR (2019) Trace amine-associated receptor 1 agonist modulates mismatch negativity-like responses in mice. Front Pharmacol 10:470. https://doi.org/10.3389/fphar.2019.00470

Näätänen R, Kujala T, Winkler I (2011) Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22. https://doi.org/10.1111/j.1469-8986.2010.01114.x

Näätänen R, Kähkönen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: A review. Int J Neuropsychopharmacol 12:125–135. https:// doi.org/10.1017/S1461145708009322

Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG (1993) Impairment of early cortical processing in schizophrenia: An event-related potential confirmation study. Biol Psychiatry 33:513–519. https://doi.org/10.1016/0006-3223(93)90005-X

Michie PT (2001) What has MMN revealed about the auditory system in schizophrenia? Int J Psychophysiol 42:177–194. https://doi.org/10.1016/S0167-8760(01)00166-0

O’Reilly JA, Conway BA (2021) Classical and controlled auditory mismatch responses to multiple physical deviances in anaesthetised and conscious mice. Eur J Neurosci 53:1839–1854. https://doi.org/10.1111/ejn.15072

Ross JM, Hamm JP (2020) Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 14:13. https://doi.org/10.3389/fncir.2020.00013

Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC, Bettler B (2009) The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci U S A 106:20081–20086. https://doi.org/10.1073/pnas.0906522106

Revel FG, Moreau J-L, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci U S A 108:8485–8490. https://doi.org/10.1073/pnas.1103029108

Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR (2011) Functional Interaction between Trace Amine-Associated Receptor 1 and Dopamine D2 Receptor. Mol Pharmacol 80:416–425. https://doi.org/10.1124/mol.111.073304

Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, Metzler V, Chaboz S, Groebke Zbinden K, Galley G, Norcross RD, Tuerck D, Bruns A, Morairty SR, Kilduff TS, Wallace TL, Risterucci C, Wettstein JG, Hoener MC (2013) A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry 18:543–556. https://doi.org/10.1038/mp.2012.57

Thorn DA, Jing L, Qiu Y, Gancarz-Kausch AM, Galuska CM, Dietz DM, Zhang Y, Li JX (2014) Effects of the trace amine-associated receptor 1 agonist RO5263397 on abuse-related effects of cocaine in rats. Neuropsychopharmacology 39:2309–2316. https://doi.org/10.1038/npp.2014.91

Cotter R, Pei Y, Mus L, Harmeier A, Gainetdinov RR, Hoener MC, Canales JJ (2015) The trace amine-associated receptor 1 modulates methamphetamine’s neurochemical and behavioral effects. Front Neurosci 9:39. https://doi.org/10.3389/fnins.2015.00039

Liu JF, Seaman R, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Li JX (2018) Role of trace amine-associated receptor 1 in nicotine’s behavioral and neurochemical effects. Neuropsychopharmacology 43:2435–2444. https://doi.org/10.1038/s41386-018-0017-9

Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD (2021) Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int J Mol Sci 22:13185. https://doi.org/10.3390/ijms222413185

Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, Flach K, Nagamoto H, Bickford P, Leonard S, Freedman R (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24:189–202.

Duque D, Malmierca MS, Caspary DM (2014) Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anaesthetized rat. J Physiol 592:729–743. https://doi.org/10.1113/jphysiol.2013.261941

Nelken I (2014) Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. Biol Cybern 108:655–663. https://doi.org/10.1007/s00422-014-0585-7

Natan RG, Briguglio JJ, Mwilambwe-Tshilobo L, Jones SI, Aizenberg M, Goldberg EM, Geffen MN (2015) Complementary control of sensory adaptation by two types of cortical interneurons. Elife 4:e09868. https://doi.org/10.7554/eLife.09868

Malmierca MS, Anderson LA, Antunes FM (2015) The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: A potential neuronal correlate for predictive coding. Front Syst Neurosci 9:19. https://doi.org/10.3389/fnsys.2015.00019

Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR (2014) Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: Role of D2 dopamine autoreceptors. Neuropharmacology 81:283–291. https://doi.org/10.1016/j.neuropharm.2014.02.007

Kähkönen S, Ahveninen J, Jääskeläinen IP, Kaakkola S, Näätänen R, Huttunen J, Pekkonen E (2001) Effects of haloperidol on selective attention: A combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology 25:498–504. https://doi.org/10.1016/S0893-133X(01)00255-X

Valdés-Baizabal C, Carbajal G V., Pérez-González D, Malmierca MS (2020) Dopamine modulates subcortical responses to surprising sounds. PLoS Biol 18:e3000744. https://doi.org/10.1371/journal.pbio.3000744

Ehlers CL, Wall TL, Chaplin RI (1991) Long latency event-related potentials in rats: Effects of dopaminergic and serotonergic depletions. Pharmacol Biochem Behav 38:789–793. https://doi.org/10.1016/0091-3057(91)90243-U

Ahveninen J, Kähkönen S, Pennanen S, Liesivuori J, Ilmoniemi RJ, Jääskeläinen IP (2002) Tryptophan depletion effects on EEG and MEG responses suggest serotonergic modulation of auditory involuntary attention in humans. Neuroimage 16:1052–1061. https://doi.org/10.1006/nimg.2002.1142

Kähkönen S, Mäkinen V, Jääskeläinen IP, Pennanen S, Liesivuori J, Ahveninen J (2005) Serotonergic modulation of mismatch negativity. Psychiatry Res - Neuroimaging 138:61–74. https://doi.org/10.1016/j.pscychresns.2004.09.006

Pan W, Lyu K, Zhang H, Li C, Chen P, Ying M, Chen F, Tang J (2020) Attenuation of auditory mismatch negativity in serotonin transporter knockout mice with anxiety-related behaviors. Behav Brain Res 379:112387. https://doi.org/10.1016/j.bbr.2019.11238741.

Shen HW, Hagino Y, Kobayashi K, Shinohara-Tanaka K, Ikeda K, Yamamoto H, Yamamoto T, Lesch KP, Murphy DL, Hall FS, Uhl GR, Sora I (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29:1790–1799. https://doi.org/10.1038/sj.npp.1300476