ВИТАМИН D3 ИНГИБИРУЕТ ФАГОЦИТАРНУЮ АКТИВНОСТЬ АСТРОЦИТОВ МОЗГА КРЫСЫ В ПЕРВИЧНОЙ КУЛЬТУРЕ
PDF

Ключевые слова

астроциты
фагоцитоз
витамин D3

Аннотация

Дефицит витамина D3 рассматривают в качестве фактора риска при развитии нейродегенеративных заболеваний, сопровождающихся повышенным образованием апоптотических субстратов. В ткани мозга млекопитающих первичным сенсором апоптотических субстратов являются астроглиальные клетки, обладающие фагоцитарной активностью. В настоящей работе был изучен вопрос о влиянии витамина D3 в составе коммерческих препаратов «ДЕТРИМЕД D3» и «Витамин D3 2000МЕ» на фагоцитарную активность астроцитов мозга крысы в первичной культуре. Впервые установлено, что витамин D3 является мощным природным ингибитором фагоцитарной активности астроцитов. Предварительная инкубация астроцитов с 10 мкм витамина D3 приводила к снижению фагоцитарной активности астроцитов (в 1.9 и 3.5 раза по отношению к контролю, при использовании препаратов «ДЕТРИМЕД D3» и «Витамин D3 2000МЕ» соответственно). Этот эффект сопровождался достоверным истощением активного расщепляющего компартмента астроцитов, к которому относятся компоненты эндо-лизосомальной системы (на 31% по сравнению с контролем). Результаты проведенного исследования могут быть использованы в клинической практике для корректировки существующих стратегий лечения c применением витамина D3 у пациентов, страдающих нейродегенеративными заболеваниями, сопровождающимися накоплением апоптотических субстратов.

https://doi.org/10.31857/S0044452922030068
PDF

Литература

Sirajudeen S, Shah I, Al Menhali A (2019) A Narrative Role of Vitamin D and Its Receptor: With Current Evidence on the Gastric Tissues. Int J Mol Sci 20:3832. https://doi.org/10.3390/ijms20153832.

Bouillon R, Schuit F, Antonio L, Rastinejad F (2020) Vitamin D Binding Protein: A Historic Overview. Front Endocrinol 10:910. https://doi.org/10.3389/fendo.2019.00910

Smolders J, Moen SM, Damoiseaux J, Huitinga I, Holmøy T (2011) Vitamin D in the healthy and inflamed central nervous system: access and function. J Neurol Sci 311:37–43. https://doi.org/10.1016/j.jns.2011.07.033

Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci U S A 93:4229–4234. https://doi.org/10.1073/pnas.93.9.4229

Gáll Z, Székely O (2021) Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings. Nutrients 13:3672. https://doi.org/10.3390/nu13113672

Jiao KP, Li SM, Lv WY, Jv ML, He HY (2017) Vitamin D3 repressed astrocyte activation following lipopolysaccharide stimulation in vitro and in neonatal rats. Neuroreport 28:492–497. https://doi.org/10.1097/WNR.0000000000000782

Jung YJ, Chung WS (2018) Phagocytic Roles of Glial Cells in Healthy and Diseased Brains. Biomol Ther (Seoul) 26: 350–357. https://doi.org/10.4062/biomolther.2017.133

Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5:85–87. https://doi.org/10.1016/s0962-8924(00)88955-2

Lee JH, Kim JY, Noh S, Lee H, Lee SY, Mun JY, Park H, Chung WS (2021) Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590:612–617. https://doi.org/10.1038/s41586-020-03060-3

Itoh M, Yano A, Li X, Miyamoto K, Takeuchi Y (1999) Limited uptake of foreign materials by resident macrophages in murine ovarian tissues. J Reprod Immunol 43:55–66. https://doi.org/10.1016/S0165-0378(99)00004-2

Chung WS, Clarke L, Wang G, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C , Smith SJ, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400. https://doi.org/10.1038/nature12776

Healy LM, Perron G, Won SY, Michell-Robinson MA, Rezk A, Ludwin SK, Moore CS, Hall JA, Bar-Or A, Antel JP (2016) MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. J Immunol 196:3375–3384. doi: 10.4049/jimmunol.1502562

Franklin RJM, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9: 839e855. http://dx.doi.org/10.1038/nrn2480

Koduah P, Paul F, Dörr JM (2017) Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J 8:313–325. doi: 10.1007/s13167-017-0120-8

Hamprecht B, Loffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345. https://doi.org/10.1016/0076-6879(85)09097-8

Militante JD, Lombardini JB (2000) Stabilization of calcium uptake in rat rod outer segments by taurine and ATP. Amino Acids 19:561–570. http://dx.doi.org/10.1007/s007260070006

Yefimova MG, Messaddeq N, Harnois T, Meunier AC, Clarhaut J, Noblanc A, Weickert JL, Cantereau A, Philippe M, Bourmeyster N, Benzakour O (2013) A chimerical phagocytosis model reveals the recruitment by Sertoli cells of autophagy for the degradation of ingested illegitimate substrates. Autophagy 9: 653–666. https://doi.org/10.4161/auto.23839

Соколова ТВ, Васильев ДС, Рычкова МП, Аврова НФ, Ефимова МГ (2020) Фагоцитоз апоптотических субстратов сопровождается пролиферацией астроглиальных клеток мозга крыс в первичной культуре. Журн эвол биохим физиол 56:81–84. [Sokolova TV, Vasilyev DS, Rychkova MP, Avrova NF, Yefimova MG (2020) Phagocytosis of Apoptotic Substrates Is Accompanied by Proliferation of Cultured Rat Primary Astrocytes. J Evol Biochem Physiol 56:81–84. (In Russ)]. https://doi.org/10.31857/S00 4 4 452920010131

Vázquez CL, Colombo MI (2009) Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol 452:85–95. https://doi.org/10.1016/S0076-6879(08)03606-9

LaVail MM (1976) Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science194:1071–1074. https://doi.org/10.1126/science.982063

Chemes H (1986) The phagocytic function of Sertoli cells: a morphological, biochemical, and endocrinological study of lysosomes and acid phosphatase localization in the rat testis. Endocrinology 119:1673–1681. https://doi.org/10.1210/endo-119-4-1673

Yefimova MG, Lefevre C, Bashamboo A, Eozenou C, Burel A, Lavault MT, Meunier AC, Pimentel C, Veau S, Neyroud AS, Jaillard S, Jégou B, Bourmeyster N, Ravel C (2020) Granulosa cells provide elimination of apoptotic oocytes through unconventional autophagy-assisted phagocytosis. Hum Reprod 35:1346–1362. https://doi.org/10.1093/humrep/deaa097

Lööv C, Mitchell CH, Simonsson M, Erlandsson A (2015) Slow degradation in phagocytic astrocytes can be enhanced by lysosomal acidification. Glia 63:1997–2009. https://doi.org/10.1002/glia.22873

Clarke J, Yaqubi M, Futhey NC, Sedaghat S, Baufeld C, Blain M, Baranzini S, Butovsky O, Antel J, White JH, Healy LM (2020) Vitamin D Regulates MerTK-Dependent Phagocytosis in Human Myeloid Cells. J Immunol 205:398–406. https://doi.org/10.4049/jimmunol.2000129

Ponath G, Ramanan S, Mubarak M, Housley W, Lee S, Sahinkaya FR, Vortmeyer A, Raine CS, Pitt D (2017) Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 140:399–413. https://doi.org/10.1093/brain/aww298

Damisah EC, Hill RA, Rai A, Chen F, Rothlin CV, Ghosh S, Grutzendler J (2020) Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci Adv 6:eaba 3239. https://doi.org/10.1126/sciadv.aba3239

Lisse TS, Hewison M (2011) Vitamin D: a new player in the world of mTOR signaling. Cell Cycle10:1888–1889. https://doi.org/10.4161/cc.10.12.15620

Al-Hendy A, Diamond MP, Boyer TG, Halder SK (2016) Vitamin D3 Inhibits Wnt/β-Catenin and mTOR Signaling Pathways in Human Uterine Fibroid Cells. J Clin Endocrinol Metab 101:1542–1551. https://doi.org/10.1210/jc.2015-3555

Kim JY, Zhao H, Martinez J, Doggett TA, Kolesnikov AV, Tang PH, Ablonczy Z, Chan CC, Zhou Z, Green DR, Ferguson TA (2013) Noncanonical autophagy promotes the visual cycle. Cell 154: 365–376. https://doi.org/10.1016/j.cell.2013.06.012

Muniz-Feliciano L, Doggett TA, Zhou Z, Ferguson TA (2017) RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye. Autophagy 13:2072–2085. https://doi.org/10.1080/15548627.2017.1380124

Yefimova MG, Ravel C, Rolland AD, Bourmeyster N, Jégou B (2021) MERTK-Mediated LC3-Associated Phagocytosis (LAP) of Apoptotic Substrates in Blood-Separated Tissues: Retina, Testis, Ovarian Follicles. Cells 10:1443. https://doi.org/10.3390/cells10061443

Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77: 57–80. https://doi.org/10.1146/annurev-physiol-021014-071649

Chai B, Gao F, Wu R, Dong T, Gu C, Lin Q, Zhang Y (2019) Vitamin D deficiency as a risk factor for dementia and Alzheimer's disease: an updated meta-analysis. BMC Neurol 19:284. https://doi.org/10.1186/s12883-019-1500-6

Janjusevic M, Gagno G, Fluca AL, Padoan L, Beltrami AP, Sinagra G, Moretti R, Aleksova A (2022) The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci 289:120193. https://doi.org/10.1016/j.lfs.2021.120193