ВОССТАНАВЛИВАЮЩИЙ ЭФФЕКТ КОМБИНИРОВАННОГО ИНТРАНАЗАЛЬНОГО ВВЕДЕНИЯ ИНСУЛИНА И С-ПЕПТИДА НА ГОРМОНАЛЬНЫЙ СТАТУС И ГИПОТАЛАМИЧЕСКИЙ СИГНАЛИНГ В МОДЕЛИ КРАТКОСРОЧНОГО ТЯЖЕЛОГО СТРЕПТОЗОТОЦИН-ИНДУЦИРОВАННОГО ДИАБЕТА У САМЦОВ КРЫС
PDF

Ключевые слова

интраназально вводимый инсулин
С-пептид проинсулина
стрептозотоциновый диабет 1 типа
лептин
инкретины
нейропротекция
тиреоидный гормон
апоптоз

Аннотация

Уже на ранних стадиях тяжелого сахарного диабета 1-го типа (СД1), для которого характерны сильно выраженный инсулиновый дефицит, острая гипергликемия и гиперфагия, возникают нарушения инкретинового и адипокинового статуса и эндокринные дисфункции, меняется гипоталамическая регуляция. Это во многом обусловлено дефицитом инсулина в мозге, вследствие чего применение интраназально вводимого инсулина (ИВИ), компенсирующего его недостаток, способно предотвратить ряд негативных последствий СД1. Поскольку при СД1 также отмечается дефицит С-пептида проинсулина, способного усиливать эффекты инсулина, то представляется перспективным использовать совместное введение ИВИ с интраназально вводимым С-пептидом (ИСП). Целью работы было изучить влияние 7-дневного лечения крыс с непродолжительным СД1, вызванным высокой дозой стрептозотоцина (65 мг/кг), с помощью ИВИ (20 мкг/крысу/день), в том числе совместно с ИСП (36 мкг/крысу/день), на уровни гормонов и инкретинов в крови и на экспрессию гипоталамических генов, кодирующих факторы пищевого поведения, рецепторы инсулина, лептина, серотонина и дофамина, а также регуляторы митохондриальной динамики и апоптоза. Лечение ИВИ и его комбинацией с ИСП нормализовали повышенные при СД1 уровни глюкагоноподобного пептида-1 (ГПП-1) и грелина и увеличивали сниженные при СД1 уровни лютеинизирующего и тиреотропного гормонов, тиреоидных гормонов, не влияя на уровень тестостерона. Одним из механизмов этого было повышение в гипоталамусе экспрессии анорексигенных генов, кодирующих меланокортиновый рецептор 4-го типа и про-опиомеланокортин, снижение генной экспрессии орексигенного нейропептида Y и нормализация экспрессии генов, ответственных за митохондриальную динамику (Mfn-1, Mfn-2, Drp-1), апоптоз (Bcl-2) и аутофагию (Beclin-1). Монотерапия с ИВИ была менее эффективной, в то время как монотерапия ИСП практически не влияла на оцениваемые показатели. Таким образом, лечение комбинацией ИВИ с ИСП и, в меньшей степени, одним ИВИ нормализует уровни ГПП-1 и грелина, восстанавливает уровень лютеинизирующего гормона и гормональные показатели тиреоидной системы у самцов крыс с краткосрочным тяжелым СД1, что обусловлено, в том числе, нормализацией гипоталамической сигнализации.

https://doi.org/10.31857/S0044452922030020
PDF

Литература

Shpakov AO, Derkach KV, Berstein LM (2015) Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 1: FSO25. https://doi.org/10.4155/fso.15.23

Milstein JL, Ferris HA (2021) The brain as an insulin-sensitive metabolic organ. Mol Metab 52: 101234. https://doi.org/10.1016/j.molmet.2021.101234

Scherer T, Sakamoto K, Buettner C (2021) Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 17: 468‒483. https://doi.org/10.1038/s41574-021-00498-x

Rhea EM, Salameh TS, Banks WA (2019) Routes for the delivery of insulin to the central nervous system: A comparative review. Exp Neurol 313: 10‒15. https://doi.org/10.1016/j.expneurol.2018.11.007

Dholakia J, Prabhakar B, Shende P (2021) Strategies for the delivery of antidiabetic drugs via intranasal route. Int J Pharm 608: 121068. https://doi.org/10.1016/j.ijpharm.2021.121068

Hallschmid M (2021) Intranasal insulin. J Neuroendocrinol 33: e12934. https://doi.org/10.1111/jne.12934

Derkach KV, Bogush IV, Berstein LM, Shpakov AO (2015) The Influence of Intranasal Insulin on Hypothalamic-Pituitary-Thyroid Axis in Normal and Diabetic Rats. Horm Metab Res 47: 916‒924. https://doi.org/10.1055/s-0035-1547236

Derkach KV, Ivantsov AO, Chistyakova OV, Sukhov IB, Buzanakov DM, Kulikova AA, Shpakov AO (2017) Intranasal Insulin Restores Metabolic Parameters and Insulin Sensitivity in Rats with Metabolic Syndrome. Bull Exp Biol Med 163: 184‒189. https://doi.org/10.1007/s10517-017-3762-6

Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA, Donohue MC, Brewer JB, Jenkins C, Harless K, Gessert D, Aisen PS (2020) Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia: A Randomized Clinical Trial. JAMA Neurol 77: 1099‒1109. https://doi.org/10.1001/jamaneurol.2020.1840

Badenes R, Qeva E, Giordano G, Romero-García N, Bilotta F (2021) Intranasal Insulin Administration to Prevent Delayed Neurocognitive Recovery and Postoperative Neurocognitive Disorder: A Narrative Review. Int J Environ Res Public Health 18: 2681. https://doi.org/10.3390/ijerph18052681

Gaddam M, Singh A, Jain N, Avanthika C, Jhaveri S, De la Hoz I, Sanka S, Goli SR (2021) A Comprehensive Review of Intranasal Insulin and Its Effect on the Cognitive Function of Diabetics. Cureus 13: e17219. https://doi.org/10.7759/cureus.17219

Hallschmid M (2021) Intranasal Insulin for Alzheimer's Disease. CNS Drugs 35: 21‒37. https://doi.org/10.1007/s40263-020-00781-x

Zakharova IO, Bayunova LV, Zorina II, Sokolova TV, Shpakov AO, Avrova NF (2021) Insulin and α-Tocopherol Enhance the Protective Effect of Each Other on Brain Cortical Neurons under Oxidative Stress Conditions and in Rat Two-Vessel Forebrain Ischemia/Reperfusion Injury. Int J Mol Sci 22: 11768. https://doi.org/10.3390/ijms222111768

Jörnvall H, Lindahl E, Astorga-Wells J, Lind J, Holmlund A, Melles E, Alvelius G, Nerelius C, Mäler L, Johansson J (2010) Oligomerization and insulin interactions of proinsulin C-peptide: Threefold relationships to properties of insulin. Biochem Biophys Res Commun 391: 1561‒1566. https://doi.org/10.1016/j.bbrc.2009.12.125

Nerelius C, Alvelius G, Jörnvall H (2010) N-terminal segment of proinsulin C-peptide active in insulin interaction/desaggregation. Biochem Biophys Res Commun 403: 462‒467. https://doi.org/10.1016/j.bbrc.2010.11.058

Landreh M, Johansson J, Wahren J, Jörnvall H (2014) The structure, molecular interactions and bioactivities of proinsulin C-peptide correlate with a tripartite molecule. Biomol Concepts 5: 109‒118. https://doi.org/10.1515/bmc-2014-0005

Landreh M, Jörnvall H (2021) Biological activity versus physiological function of proinsulin C-peptide. Cell Mol Life Sci 78: 1131‒1138. https://doi.org/10.1007/s00018-020-03636-2

Derkach KV, Shpakova EA, Bondareva VM, Shpakov AO (2018) The effect of intranasal administration of proinsulin C-peptide and its C-terminal fragment on metabolic parameters in rats with streptozotocin diabetes. J Evol Biochem Physiol 54: 242–245. https://doi.org/10.1134/S0022093018030092

Derkach KV, Bondareva VM, Shpakov AO (2019) Regulatory effects of intranasal C-peptide and insulin on thyroid and androgenic status of male rats with moderate type 1 diabetes mellitus. J Evol Biochem Physiol 55: 493–496. https://doi.org/10.1134/S0022093019060073

Washburn RL, Mueller K, Kaur G, Moreno T, Moustaid-Moussa N, Ramalingam L, Dufour JM (2021) C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 9: 270. https://doi.org/10.3390/biomedicines9030270

Derkach KV, Bondareva VM, Shpakov AO (2018) Coadministration of intranasally delivered insulin and proinsulin C-peptide to rats with the types 1 and 2 diabetes mellitus restores their metabolic parameters. Advances in Gerontology 8: 139–146. https://doi.org/10.1134/S2079057018020030

Derkach KV, Bondareva VM, Perminova AA, Shpakov AO (2019) C-peptide and insulin during combined intranasal administration improve the metabolic parameters and activity of the adenylate cyclase system in the hypothalamus, myocardium, and epididymal fat of rats with type 2 diabetes. Cell Tissue Biol 13: 228–236. https://doi.org/10.1134/S1990519X19030039

Derkach KV, Perminova AA, Buzanakov DM, Shpakov AO (2019) Intranasal Administration of Proinsulin C-Peptide Enhances the Stimulating Effect of Insulin on Insulin System Activity in the Hypothalamus of Diabetic Rats. Bull Exp Biol Med 167: 351‒355. https://doi.org/10.1007/s10517-019-04525-w

Khan SM, Hamnvik OP, Brinkoetter M, Mantzoros CS (2012) Leptin as a modulator of neuroendocrine function in humans. Yonsei Med J 53: 671‒679. https://doi.org/10.3349/ymj.2012.53.4.671

Jensterle M, Janez A, Fliers E, DeVries JH, Vrtacnik-Bokal E, Siegelaar SE (2019) The role of glucagon-like peptide-1 in reproduction: from physiology to therapeutic perspective. Hum Reprod Update 25: 504‒517. https://doi.org/10.1093/humupd/dmz019

Cena H, Chiovato L, Nappi RE (2020) Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J Clin Endocrinol Metab 105: e2695–2709. https://doi.org/10.1210/clinem/dgaa285

Al-Hussaniy HA, Alburghaif AH, Naji MA (2021) Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J Med Life 14: 600‒605. https://doi.org/10.25122/jml-2021-0153

Schalla MA, Stengel A (2021) The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 22: 11059. https://doi.org/10.3390/ijms222011059

Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 14: e0213779. https://doi.org/10.1371/journal.pone.0213779

Kelesidis T, Kelesidis I, Chou S, Mantzoros CS (2010) Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med 152: 93‒100. https://doi.org/10.7326/0003-4819-152-2-201001190-00008

Aulinger BA, Vahl TP, Wilson-Pérez HE, Prigeon RL, D'Alessio DA (2015) β-Cell Sensitivity to GLP-1 in Healthy Humans Is Variable and Proportional to Insulin Sensitivity. J Clin Endocrinol Metab 100: 2489‒2496. https://doi.org/10.1210/jc.2014-4009

Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91: 301‒307. https://doi.org/10.1172/JCI116186

Gülen S, Dinçer S (2007) Effects of leptin on oxidative stress in healthy and Streptozotocin-induced diabetic rats. Mol Cell Biochem 302: 59‒65. https://doi.org/10.1007/s11010-007-9426-5

Romero MJ, Lucas R, Dou H, Sridhar S, Czikora I, Mosieri EM, Rick FG, Block NL, Sridhar S, Fulton D, Weintraub NL, Bagi Z, Schally AV (2016) Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes. Proc Natl Acad Sci U S A 113: 1895‒1900. https://doi.org/10.1073/pnas.1525520113

Cruz B, Flores RJ, Uribe KP, Espinoza EJ, Spencer CT, Serafine KM, Nazarian A, O'Dell LE (2019) Insulin modulates the strong reinforcing effects of nicotine and changes in insulin biomarkers in a rodent model of diabetes. Neuropsychopharmacology 44: 1141‒1151. https://doi.org/10.1038/s41386-018-0306-3

Kralova E, Marusakova M, Hadova K, Krenek P, Klimas J (2021) Dapagliflozin elevates plasma high-density lipoprotein levels and influences visceral fat gene expression in streptozotocin-induced diabetes mellitus. J Pharm Pharmacol 73: 778‒784. https://doi.org/10.1093/jpp/rgab005

Bando M, Iwakura H, Ariyasu H, Koyama H, Hosoda K, Adachi S, Nakao K, Kangawa K, Akamizu T (2013) Overexpression of intraislet ghrelin enhances β-cell proliferation after streptozotocin-induced β-cell injury in mice. Am J Physiol Endocrinol Metab 305: E140‒E148. https://doi.org/10.1152/ajpendo.00112.2013

Murdolo G, Lucidi P, Di Loreto C, Parlanti N, De Cicco A, Fatone C, Fanelli CG, Bolli GB, Santeusanio F, De Feo P (2003) Insulin is required for prandial ghrelin suppression in humans. Diabetes 52: 2923‒2927. https://doi.org/10.2337/diabetes.52.12.2923

Gelling RW, Overduin J, Morrison CD, Morton GJ, Frayo RS, Cummings DE, Schwartz MW (2004) Effect of uncontrolled diabetes on plasma ghrelin concentrations and ghrelin-induced feeding. Endocrinology 145: 4575‒4582. https://doi.org/10.1210/en.2004-0605

Ariga H, Imai K, Chen C, Mantyh C, Pappas TN, Takahashi T (2008) Does ghrelin explain accelerated gastric emptying in the early stages of diabetes mellitus? Am J Physiol Regul Integr Comp Physiol 294: R1807‒R1812. https://doi.org/10.1152/ajpregu.00785.2007

Luvuno M, Mbongwa HP, Khathi A (2016) The effects of Syzygium aromaticum-derived triterpenes on gastrointestinal ghrelin expression in streptozotocin-induced diabetic rats. Afr J Tradit Complement Altern Med 13: 8‒14. https://doi.org/10.21010/ajtcam.v13i4.2

Bestetti G, Locatelli V, Tirone F, Rossi GL, Müller EE (1985) One month of streptozotocin-diabetes induces different neuroendocrine and morphological alterations in the hypothalamo-pituitary axis of male and female rats. Endocrinology 117: 208‒216. https://doi.org/10.1210/endo-117-1-208

Stoyanovitch AG, Johnson MA, Clifton DK, Steiner RA, Fraley GS (2005) Galanin-like peptide rescues reproductive function in the diabetic rat. Diabetes 54: 2471‒2476. https://doi.org/10.2337/diabetes.54.8.2471

van Haasteren GA, Sleddens-Linkels E, van Toor H, Klootwijk W, de Jong FH, Visser TJ, de Greef WJ (1997) Possible role of corticosterone in the down-regulation of the hypothalamo-hypophysial-thyroid axis in streptozotocin-induced diabetes mellitus in rats. J Endocrinol 153: 259‒267. https://doi.org/10.1677/joe.0.1530259

Ige AO, Chidi RN, Egbeluya EE, Jubreel RO, Adele BO, Adewoye EO (2019) Amelioration of thyroid dysfunction by magnesium in experimental diabetes may also prevent diabetes-induced renal impairment. Heliyon 5: e01660. https://doi.org/10.1016/j.heliyon.2019.e01660

Pontes DA, Fernandes GS, Piffer RC, Gerardin DC, Pereira OC, Kempinas WG (2011) Ejaculatory dysfunction in streptozotocin-induced diabetic rats: the role of testosterone. Pharmacol Rep 63: 130‒138. https://doi.org/10.1016/s1734-1140(11)70407-8

Guo Z, Yan X, Wang L, Wu J, Jing X, Liu J (2016) Effect of Telmisartan or Insulin on the Expression of Adiponectin and its Receptors in the Testis of Streptozotocin-Induced Diabetic Rats. Horm Metab Res 48: 404‒412. https://doi.org/10.1055/s-0042-101549

Bestetti GE, Reymond MJ, Perrin IV, Kniel PC, Lemarchand-Béraud T, Rossi GL (1987) Thyroid and pituitary secretory disorders in streptozotocin-diabetic rats are associated with severe structural changes of these glands. Virchows Arch B Cell Pathol Incl Mol Pathol 53: 69‒78. https://doi.org/10.1007/BF02890227

Dhindsa S, Chemitiganti R, Ghanim H, Santiago E, Haider A, Chaar N, Mok M, McKee A, Dandona P (2018) Intranasal Insulin Administration Does Not Affect LH Concentrations in Men with Diabetes. Int J Endocrinol 2018: 6170154. https://doi.org/10.1155/2018/6170154

McCarty MF (1995) Central insulin may up-regulate thyroid activity by suppressing neuropeptide Y release in the paraventricular nucleus. Med Hypotheses 45: 193‒199. https://doi.org/10.1016/0306-9877(95)90068-3

Kouidhi S, Clerget-Froidevaux MS (2017) Integrating Thyroid Hormone Signaling in Hypothalamic Control of Metabolism: Crosstalk Between Nuclear Receptors. Int J Mol Sci 19: 2017. https://doi.org/10.3390/ijms19072017

Fekete C, Kelly J, Mihály E, Sarkar S, Rand WM, Légrádi G, Emerson CH, Lechan RM (2001) Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology 142: 2606‒2613. https://doi.org/10.1210/endo.142.6.8207

Fekete C, Sarkar S, Rand WM, Harney JW, Emerson CH, Bianco AC, Lechan RM (2002) Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology 143: 3846‒3853. https://doi.org/10.1210/en.2002-220338

Oghbaei H, Fattahi A, Hamidian G, Sadigh-Eteghad S, Ziaee M, Mahmoudi J (2021) A closer look at the role of insulin for the regulation of male reproductive function. Gen Comp Endocrinol 300: 113643. https://doi.org/10.1016/j.ygcen.2020.113643

Shpakov AO (2021) Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 14: 42. https://doi.org/10.3390/ph14010042

Bano R, Shamas S, Khan SUH, Shahab M (2022) Inverse age-related changes between hypothalamic NPY and KISS1 gene expression during pubertal initiation in male rhesus monkey. Reprod Biol 22: 100599. https://doi.org/10.1016/j.repbio.2021.100599

Chistyakova OV, Sukhov IB, Loshkareva ML, Shipilov VN, Bondareva VM, Shpakov AO (2012) Initial stages of the insulin signaling system in the brain of rats with experimental diabetes mellitus. Bull Exp Biol Med 153: 25‒28. https://doi.org/10.1007/s10517-012-1634-7

King MR, Anderson NJ, Liu C, Law E, Cundiff M, Mixcoatl-Zecuatl TM, Jolivalt CG (2015) Activation of the insulin-signaling pathway in sciatic nerve and hippocampus of type 1 diabetic rats. Neuroscience 303: 220‒228. https://doi.org/10.1016/j.neuroscience.2015.06.060

Vieira MN, Lyra E, Silva NM, Ferreira ST, De Felice FG (2017) Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy? Front Aging Neurosci 9:7. https://doi.org/10.3389/fnagi.2017.00007

Dodd GT, Xirouchaki CE, Eramo M, Mitchell CA, Andrews ZB, Henry BA, Cowley MA, Tiganis T (2019) Intranasal Targeting of Hypothalamic PTP1B and TCPTP Reinstates Leptin and Insulin Sensitivity and Promotes Weight Loss in Obesity. Cell Rep 28: 2905‒2922.e5. https://doi.org/10.1016/j.celrep.2019.08.019

Roque PS, Hooshmandi M, Neagu-Lund L, Yin S, Yousefpour N, Sato H, Sato T, Nakadate Y, Kawakami A, Tahmasebi S, Ribeiro-da-Silva A, Gkogkas CG, Prager-Khoutorsky M, Schricker T, Wykes L, Khoutorsky A (2021) Intranasal insulin rescues repeated anesthesia-induced deficits in synaptic plasticity and memory and prevents apoptosis in neonatal mice via mTORC1. Sci Rep 11: 15490. https://doi.org/10.1038/s41598-021-94849-3

Xu LB, Huang HD, Zhao M, Zhu GC, Xu Z (2021) Intranasal Insulin Treatment Attenuates Metabolic Distress and Early Brain Injury After Subarachnoid Hemorrhage in Mice. Neurocrit Care 34: 154‒166. https://doi.org/10.1007/s12028-020-01011-4

Derkach KV, Zorina II, Zakharova IO, Basova NE, Bakhtyukov AA, Shpakov AO (2020) The Influence of Intranasally Administered Insulin and C-peptide on AMP-Activated Protein Kinase Activity, Mitochondrial Dynamics and Apoptosis Markers in the Hypothalamus of Rats with Streptozotocin-Induced Diabetes. J Evol Biochem Physiol 56: 207–217. https://doi.org/10.1134/S0022093020030035

Guan ZF, Zhou XL, Zhang XM, Zhang Y, Wang YM, Guo QL, Ji G, Wu GF, Wang NN, Yang H, Yu ZY, Zhou HG, Guo JC, Liu YC (2016) Beclin-1- mediated autophagy may be involved in the elderly cognitive and affective disorders in streptozotocin-induced diabetic mice. Transl Neurodegener 5: 22. https://doi.org/10.1186/s40035-016-0070-4