КАЛЬЦИЕВЫЙ КОМПОНЕНТ ФОТООТВЕТОВ СЕТЧАТКИ МОЛЛЮСКА LYMNAEA STAGNALIS: ФАРМАКОЛОГИЧЕСКИЙ И УЛЬТРАСТРУКТУРНЫЙ АНАЛИЗ
PDF

Ключевые слова

Lymnaea stagnalis
сетчатка
фоторецепторы
ультраструктура
фототрансдукция
электроретинограмма
фармакологический анализ
Ca2

Аннотация

Данное исследование направлено на анализ роли ионов кальция в механизме преобразования светового сигнала в сетчатке большого прудовика Lymnaea stagnalis. С этой целью изучено влияние на электрические реакции изолированного глаза моллюска веществ, влияющих на концентрацию цитоплазматического Сa2+. Применяли: модулятор кальциевого тока 2-аминоэтил дифенил борат, хелатирующий агент двухвалентных катионов EGTA, а также (+)-цис-дилтиазем и Cd2+ как блокаторы кальциевых каналов. Все применявшиеся вещества с различной степенью эффективности подавляли медленную волну электроретинограммы и связанную с ней импульсную активность. Делается вывод, что фототрансдукция в микровиллярных рецепторах сетчатки прудовика включает повышение концентрации цитоплазматического Ca2+. Результаты фармакологических экспериментов, а также особенности ультраструктуры сетчатки моллюска позволяют предполагать, что этот результат достигается не только выбросом Ca2+ из внутриклеточных депо апикальных частей фоторецепторов, но и, по крайней мере, частично поступлением из внеклеточной среды.

https://doi.org/10.31857/S004445292203007X
PDF

Литература

Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell 139(2):246–264. https://doi.org/10.1016/j.cell.2009.09.029

Abbas F, Vinberg F (2009) Transduction and adaptation mechanisms in the cilium or microvilli of photoreceptors and olfactory receptors from insects to humans. Front Cell Neurosci 15:662453. https://doi.org/10.3389/fncel.2021.662453

Katz B, Minke B (2009) Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 3:2. https://doi.org/10.3389/neuro.03.002.2009

Fu Y, Yau KW (2007) Phototransduction in mouse rods and cones. Pflugers Arch 454(5):805–819. https://doi.org/10.1007/s00424-006-0194-y

Nasi E, del Pilar Gomez M, Payne R (2000) Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates. In D.G. Stavenga, W.J. DeGrip, E.N. Pugh (eds). Handbook of Biological Physics. V.3. Elsevier Science B.V. North-Holland. 389–448. https://doi.org/10.1016/S1383-8121(00)80011-1

Fain GL, Hardie R, Laughlin SB (2010) Phototransduction and the evolution of photoreceptors. Curr Biol 20(3): R114–R124. https://doi.org/10.1016/j.cub.2009.12.006

Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871. https://doi.org/10.1126/science.1099955

Gotow T, Nishi T (2009) A new photosensory function for simple photoreceptors, the intrinsically photoresponsive neurons of the sea slug Onchidium. Front Cell Neurosci 3:18. 2009. https://doi.org/10.3389/neuro.03.018.2009

Kartelija G, Nedeljkovic M, Radenovic L (2003) Photosensitive neurons in mollusks. Comp Biochem Physiol A 134(3):483–495. https://doi.org/10.1016/s1095-6433(02)00351-3

Katagiri Y, Katagiri Y (2008) A multiple photoreceptive system in a marine gastropod, Onchidium: 1) Morphological characteristics and photoresponse of four kinds of photoreceptor cells. Hikaku seiri seikagaku (Comparative Physiology and Biochemistry) 25(1):4–10. https://doi.org/10.3330/hikakuseiriseika.25.4

Sudoplatov KA, Zhukov VV (1999) Electrical responses of peripheral nerves of the mollusc Lymnaea stagnalis to photostimulation of skin surface. J Evol Biochem Physiol 35(4):360–369. https://www.researchgate.net/publication/289523282

Sakakibara M, Aritaka T, Iizuka A, Suzuki H, Horikoshi T, Lukowiak K (2005) Electrophysiological responses to light of neurons in the eye and statocyst of Lymnaea stagnalis. J Neurophysiol 93(1):493–507. https://doi.org/10.1152/jn.00692.2004

Zhukov VV, Fedorenko AD, Lavrova AI, Postnikov EB (2017) Electrical responses of Lymnaea stagnalis to light stimulation: Effect of divalent cations. J Evol Biochem Physiol 53(5):404–413. https://doi.org/10.1134/S0022093017050064

Takigami S, Sunada H, Horikoshi T, Sakakibara M (2014) Morphological and physiological characteristics of dermal photoreceptors in Lymnaea stagnalis. Biophysics (Nagoya-shi). 10:77–88. https://doi.org/10.2142/biophysics.10.77

Sunada H, Sakaguchi T, Horikoshi T, Lukowiak K, Sakakibara M (2010) The shadow-induced withdrawal response, dermal photoreceptors, and their input to the higher-order interneuron RPeD11 in the pond snail Lymnaea stagnalis. J Exp Biol 213(20):3409–3415. https://doi.org/10.1242/jeb.043521

Pankey S, Sunada H, Horikoshi T, Sakakibara M (2010) Cyclic nucleotide-gated channels are involved in phototransduction of dermal photoreceptors in Lymnaea stagnalis. J Comp Physiol B 180(8):1205–1211. https:doi.org/10.1007/s00360-010-0490-x

Stoll CJ (1973) Observations on the ultrastructure of the eye of the basommatophoran snail Lymnaea stagnalis (L.). Proc Kon Ned Akad Wet 76C:414–424. https://eurekamag.com/research/023/225/023225797.php

Bobkova MV, Gál J, Zhukov VV, Shepeleva IP, Meyer-Rochow VB (2004) Variations in the Retinal Designs of Pulmonate Snails (Mollusca, Gastropoda): Squaring Phylogenetic Background and Ecophysiological Needs (I). Invertebrate Biology 123(2):101–115. https://doi.org/10.1111/j.1744-7410.2004.tb00146.x

Zhukov VV, Saphonov MV (2020) Activation of IP3 receptors is a component of phototransduction in gastropods retina. J Evol Biochem Physiol 56(7):811. https://doi.org/10.31857/S0044452920072978

Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122(3):498–505. https://doi.org/10.1093/oxfordjournals.jbchem.a021780

Lansman JB, Hess P, Tsien RW (1986) Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 88(3):321–347. https://doi.org/10.1085/jgp.88.3.321

Dobrev D, Milde AS, Andreas K, Ravens U (1999) The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum. Br J Pharmacol 127(2):576-582. https://doi.org/10.1038/sj.bjp.0702574

Laryushkin DP, Maiorov SA, Zinchenko VP, Gaidin SG, Kosenkov AM (2021) Role of L-Type Voltage-Gated Calcium Channels in Epileptiform Activity of Neurons. Int J Mol Sci 22(19):10342. doi: https://doi.org/10.3390/ijms221910342.

Leybaert L (2016) IP3, still on the move but now in the slow lane. Sci Signal 9(453):fs17. https://www.science.org/doi/10.1126/scisignal.aal1929

Wang Y, Deshpande M, Payne R (2002) 2-Aminoethoxydiphenyl borate inhibits phototransduction and blocks voltage-gated potassium channels in Limulus ventral photoreceptors. Cell Calcium 32(4):209-216. https://doi.org/10.1016/S0143416002001562

Montell C (2012) Drosophila visual transduction. Trends Neurosci 35(6):356-363. https://doi.org/10.1016/j.tins.2012.03.004

Hardie RC (2012) Phototransduction mechanisms in Drosophila microvillar photoreceptors. WIREs Membr Transp Signal 1:162–187. https://doi.org/10.1002/wmts.20

del Pilar Gomez M, Nasi E (2009) Prolonged calcium influx after termination of light-induced calcium release in invertebrate photoreceptors. J Gen Physiol 134(3):177–189. https://doi.org/10.1085/jgp.200910214

Van Kerkhove E, Pennemans V, Swennen Q (2010) Cadmium and transport of ions and substances across cell membranes and epithelia. Biometals 23(5):823–855. https://doi.org/10.1007/s10534-010-9357-6

Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16(10):1145–1150. https://doi.org/10.1096/fj.02-0037rev

Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 536(1):3–19. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00003.x

Dickinson GD, Ellefsen KL, Dawson SP, Pearson JE, Parker I (2016) Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action. Sci Signal 9(453):ra108. https://doi.org/10.1126/scisignal.aag1625

Zhukov VV (2007) On the problem of retinal transmitters of the freshwater mollusc Lymnaea stagnalis. J Evol Biochem Phys 43(5):524–532. https://doi.org/10.1134/S0022093007050118

Zylstra U (1972) Distribution and ultrastructure of epidermal sensory cells in the freshwater snail Lymnaea stagnalis and Biomphalaria pheifferi. Neth J Zool 22:283–298. https://doi.org/10.1163/002829672X00103